

 inside front cover

 [image:]

 [image: ,]

 GitOps and Kubernetes

 Continuous Deployment with Argo CD, Jenkins X, and Flux

 Billy Yuen, Alexander Matyushentsev, Todd Ekenstam, and Jesse Suen

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Dustin Archibald

 	
 Technical development editor:

 	
 Al Krinker

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Sam Brown

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617297274

contents

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 Part 1. Background

 1 Why GitOps?

 1.1 Evolution to GitOps

 Traditional Ops

 DevOps

 GitOps

 1.2 Developer benefits of GitOps

 Infrastructure as code

 Self-service

 Code reviews

 Git pull requests

 1.3 Operational benefits of GitOps

 Declarative

 Observability

 Auditability and compliance

 Disaster recovery

 2 Kubernetes and GitOps

 2.1 Kubernetes introduction

 What is Kubernetes?

 Other container orchestrators

 Kubernetes architecture

 Deploying to Kubernetes

 2.2 Declarative vs. imperative object management

 How declarative configuration works

 2.3 Controller architecture

 Controller delegation

 Controller pattern

 NGINX operator

 2.4 Kubernetes + GitOps

 2.5 Getting started with CI/CD

 Basic GitOps operator

 Continuous integration pipeline

 Part 2. Patterns and processes

 3 Environment management

 3.1 Introduction to environment management

 Components of an environment

 Namespace management

 Network isolation

 Preprod and prod clusters

 3.2 Git strategies

 Single branch (multiple directories)

 Multiple branches

 Multirepo vs. monorepo

 3.3 Configuration management

 Helm

 Kustomize

 Jsonnet

 Configuration management summary

 3.4 Durable vs. ephemeral environments

 4 Pipelines

 4.1 Stages in CI/CD pipelines

 GitOps continuous integration

 GitOps continuous delivery

 4.2 Driving promotions

 Code vs. manifest vs. app config

 Code and image promotion

 Environment promotion

 Putting it all together

 4.3 Other pipelines

 Rollback

 Compliance pipeline

 5 Deployment strategies

 5.1 Deployment basics

 Why ReplicaSet is not a good fit for GitOps

 How Deployment works with ReplicaSets

 Traffic routing

 Configuring minikube for other strategies

 5.2 Blue-green

 Blue-green with Deployment

 Blue-green with Argo Rollouts

 5.3 Canary

 Canary with Deployment

 Canary with Argo Rollouts

 5.4 Progressive delivery

 Progressive delivery with Argo Rollouts

 6 Access control and security

 6.1 Introduction to access control

 What is access control?

 What to secure

 Access control in GitOps

 6.2 Access limitations

 Git repository access

 Kubernetes RBAC

 Image registry access

 6.3 Patterns

 Full access

 Deployment repo access

 Code access only

 6.4 Security concerns

 Preventing image pull from untrusted registries

 Cluster-level resources in a Git repository

 7 Secrets

 7.1 Kubernetes Secrets

 Why use Secrets?

 How to use Secrets

 7.2 GitOps and Secrets

 No encryption

 Distributed Git repos

 No granular (file-level) access control

 Insecure storage

 Full commit history

 7.3 Secrets management strategies

 Storing Secrets in Git

 Baking Secrets into the container image

 Out-of-band management

 External Secrets management systems

 Encrypting Secrets in Git

 Comparison of strategies

 7.4 Tooling

 HashiCorp Vault

 Vault Agent Sidecar Injector

 Sealed Secrets

 Kustomize Secret generator plugin

 8 Observability

 8.1 What is observability?

 Event logging

 Metrics

 Tracing

 Visualization

 Importance of observability in GitOps

 8.2 Application health

 Resource status

 Readiness and liveness

 Application monitoring and alerting

 8.3 GitOps observability

 GitOps metrics

 Application sync status

 Configuration drift

 GitOps change log

 Part 3. Tools

 9 Argo CD

 9.1 What is Argo CD?

 Main use cases

 Core concepts

 Sync and health statuses

 Architecture

 9.2 Deploy your first application

 Deploying the first application

 Inspect the application using the user interface

 9.3 Deep dive into Argo CD features

 GitOps-driven deployment

 Resource hooks

 Postdeployment verification

 9.4 Enterprise features

 Single sign-on

 Access control

 Declarative management

 10 Jenkins X

 10.1 What is Jenkins X?

 10.2 Exploring Prow, Jenkins X pipeline operator, and Tekton

 10.3 Importing projects into Jenkins X

 Importing a project

 Promoting a release to the production environment

 11 Flux

 11.1 What is Flux?

 What Flux does

 Docker registry scanning

 Architecture

 11.2 Simple application deployment

 Deploying the first application

 Observing application state

 Upgrading the deployment image

 Using Kustomize for manifest generation

 Securing deployment using GPG

 11.3 Multitenancy with Flux

 appendix A. Setting up a test Kubernetes cluster

 appendix B. Setting up GitOps tools

 appendix C. Configuring GPG key

 index

 front matter

preface

 As Intuit embarked on the journey from on-premises to cloud-native, the journey itself presented an opportunity to reinvent our build and deployment process. Similar to many large enterprises, our old deployment process was data-center-centric with separate QA, Ops, and Infrastructure teams. Code could take weeks to get deployed, and developers had no access to infrastructure when there were production issues. Infrastructure issues could take a long time to resolve and required many groups’ collaboration.

 As Marianna Tessel (Intuit CTO) and Jeff Brewer (Intuit SBSEG chief architect) decided to bet big on Kubernetes and Docker, we were fortunate to be the first team to fully migrate one of our production applications with Kubernetes and Docker. Along the way, we got to reinvent our CI/CD pipeline and adopt the GitOps process. Jesse and Alex created Argo CD (CNCF incubator project) to address enterprise needs for GitOps. Todd and his team created world-class cluster management tools so we can scale out to hundreds of clusters with ease.

 Having a standard like Kubernetes and Docker enables all engineers to speak a common language in terms of infrastructure and deployment. Engineers can easily contribute to other projects and deploy as soon as the development process is complete. GitOps also allows us to know exactly who and what gets changed in our environments, which is especially important if you are subject to compliance requirements. We cannot imagine going back to the old way we did deployment, and we hope that this book can help accelerate your journey to embrace GitOps!

acknowledgments

 This book turned out to be an 18-month journey that required a lot of work and additional research to tell the complete story. We believe that we have delivered what we set out to do, and it is a great book for anyone who wants to adopt GitOps and Kubernetes.

 There are quite a few people we’d like to thank for helping us along the way. At Manning, we would like to thank our development editor, Dustin Archibald, project editor, Deirdre Hiam, proofreader, Katie Tennant, and reviewing editor, Aleks Dragosavljevic.

 We want to thank Marianna Tessel and Jeff Brewer, who provided us the opportunity and freedom to transform and experiment with GitOps and Kubernetes. We would also like to thank Pratik Wadher, Saradhi Sreegiriaju, Mukulika Kupas, and Edward Lee for their guidance throughout the process. We want to call out Viktor Farcic and Oscar Medina for their insightful contributions to the Jenkins X chapter.

 To all the reviewers: Andres Damian Sacco, Angelo Simone Scotto, Björn Neuhaus, Chris Viner, Clifford Thurber, Conor Redmond, Diego Casella, James Liu, Jaume López, Jeremy Bryan, Jerome Meyer, John Guthrie, Marco Massenzio, Matthieu Evrin, Mike Ensor, Mike Jensen, Roman Zhuzha, Samuel Brown, Satej Kumar Sahu, Sean T. Booker, Wendell Beckwith, and Zorodzayi Mukuya, we say thank you. Your suggestions helped make this a better book.

 For Jeff Brewer, who inspired us all for this awesome transformation journey!

about this book

Who this book is for

 This book is intended for both Kubernetes infrastructure and operation engineers and software developers who want to deploy applications to Kubernetes through a declarative model using the GitOps process. It will benefit anyone looking to improve the stability, reliability, security, and auditability of their Kubernetes clusters while at the same time reducing operational costs through automated continuous software deployments.

 Readers are expected to have a working knowledge of Kubernetes (Deployment, Pod, Service, and Ingress resources, for example) as well as an understanding of modern software development practices including continuous integration/continuous deployment (CI/CD), revision control systems (such as Git), and deployment/infrastructure automation.

Who this book is not for

 Advanced users who have successfully implemented a mature GitOps system may be better off reading a more advanced book on their chosen tool.

 This book is not intended to cover all aspects of Kubernetes in depth. While we cover many Kubernetes concepts that are relevant to GitOps, readers looking for a comprehensive guide to Kubernetes should look at the other great books and online resources available on the topic.

How this book is organized: A roadmap

 This book describes the benefits of GitOps on Kubernetes, including flexible configuration management, monitoring, robustness, multienvironment support, and security. You will learn the best practices, techniques, and tools to achieve these benefits, which enable enterprises to use Kubernetes to accelerate application development without compromising on stability, reliability, or security.

 You will also gain in-depth understanding of the following topics:

 	
 Multiple-environment management with branching, namespace, and configuration

 	
 Access control with Git, Kubernetes, and pipelines

 	
 Pipeline considerations with CI/CD, promotion, push/pull, and release/rollback

 	
 Observability and drift detection

 	
 Managing Secrets

 	
 Deployment strategy selection among rolling update, blue/green, canary, and progressive delivery

 This book takes a hands-on approach with tutorials and exercises to develop the skills you need to embrace GitOps using Kubernetes. After reading this book, you will know how to implement a declarative continuous delivery system for your applications running on Kubernetes. This book contains hands-on tutorials on

 	
 Getting started with managing Kubernetes application deployments

 	
 Configuration and environment management using Kustomize

 	
 Writing your own basic Kubernetes continuous delivery (CD) operator

 	
 Implementing CI/CD using Argo CD,1 Jenkins X,2 and Flux3

 Imperative vs. Declarative There are two basic ways to deploy Kubernetes: imperatively using many kubectl commands or declaratively by writing manifests and using kubectl apply. The former is useful for learning and interactive experimentation. The latter is best for reproducible deployments and tracking changes.

 This book is intended for you to follow along, running the hands-on portion of the tutorials, using your own test Kubernetes cluster. Appendix A describes several options for creating a test cluster.

 There are many code listings contained in the book. All code listings and additional supporting material can be found in the publicly accessible GitHub repository for this book:

 https://github.com/gitopsbook/resources

 We encourage you to clone or fork this repository and use it as you work through the tutorials and exercises in the book.

 The following tools and utilities should be installed on your workstation:

 	
 Kubectl (v1.16 or later)

 	
 Minikube (v1.4 or later)

 	
 Bash or the Windows Subsystem for Linux (WSL)

 Most tutorials and exercises can be completed using a minikube running on your workstation. If not, we will mention if the cluster running on a cloud provider is needed, and you can refer to appendix A for details on creating the cluster.

 Note You may incur additional costs for running a test Kubernetes cluster on a cloud provider. While we have attempted to reduce the cost of the recommended test configuration as much as possible, remember you are responsible for these costs. We recommend you delete your test cluster after completing each tutorial or exercise.

 This book has 3 parts that cover 11 chapters. Part 1 covers the background and introduces GitOps and Kubernetes:

 	
 Chapter 1 walks you through the journey of software deployment evolution and how GitOps became the latest practice. It also covers the many key concepts and benefits of GitOps.

 	
 Chapter 2 provides key concepts on Kubernetes and why its declarative nature is perfect for GitOps. It also covers the core operator concept and how to implement a simple GitOps operator.

 Part 2 goes over the patterns and processes to adopt the GitOps process:

 	
 Chapter 3 discusses the definition of an environment and how Kubernetes Namespaces nicely map as environments. It also covers branching strategy and config management to your environment implementation.

 	
 Chapter 4 goes deep into the GitOps CI/CD pipeline with comprehensive descriptions of all stages necessary for a complete pipeline. It also covers code, image, and environment promotion as well as the rollback mechanism.

 	
 Chapter 5 describes various deployment strategies, including rolling update, blue/green, canary, and progressive delivery. It also covers how to implement each strategy by using native Kubernetes resources and other open source tools.

 	
 Chapter 6 discusses GitOps-driven deployment’s attack surfaces and how to mitigate each area. It also reviews Jsonnet, Kustomize, and Helm and how to choose the right configuration management pattern for your use cases.

 	
 Chapter 7 discusses various strategies for managing Secrets for GitOps. It also covers several Secret management tools as well as native Kubernetes Secrets.

 	
 Chapter 8 explains the core concepts of observability and why it is important to GitOps. It also describes various methods to implement observability with GitOps and Kubernetes.

 Part 3 goes over several enterprise-grade GitOps tools:

 	
 Chapter 9 discusses the intent and architecture for Argo CD. It also covers configuring application deployment using Argo CD and how to secure Argo CD in production.

 	
 Chapter 10 discusses the intent and architecture for Jenkins X. It also covers configuring application deployment and promotion to various environments.

 	
 Chapter 11 discusses the intent and motivation for Flux. It also covers configuring application deployment using Flux and multitenancy.

 [image:]

 The book was organized to read all the chapters in sequential order. However, if there is a particular area of interest you’d like to jump into, we recommend you read the prerequisite chapters. For example, if you would like to jump right into learning to use Argo CD, we recommend you read chapters 1, 2, 3, and 5 before reading chapter 9.

About the code

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font to separate it from ordinary text. Sometimes, code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts. Source code for the examples in this book is available for download from https://github.com/gitopsbook /resources.

liveBook discussion forum

 Purchase of GitOps and Kubernetes includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/book/GitOps-and-Kubernetes/discussion. You can also learn more about Manning’s forums and the rules of conduct at https:// livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 Billy Yuen is a principal engineer with Intuit’s Platform team, focusing on AWS and Kubernetes adoption, system resiliency, and monitoring. Previously, Billy worked on Netflix’s Edge Services team to build the next generation of edge-service infrastructure to support millions of customers (more than 3 billion requests per day) with high scalability, resilience to failure, and rapid innovation. Billy was a speaker at Java One 2016 and Velocity NY 2016 on “Operational Excellence with Netflix Hystrix,” “CI/CD at Lightspeed” at KubeCon 2018, and “Automated Canary Release” at Container World 2019.

 Alexander Matyushentsev is a principal engineer on the Intuit Platform team, focusing on building tools that make it easier to use Kubernetes. Alexander is passionate about open source, cloud-native infrastructure, and tools that increase developers’ productivity. He is one of the core contributors to the Argo Workflows and Argo CD projects. Alexander was a speaker at KubeCon 2019 on “How Intuit Does Canary and Blue-Green Deployments with a K8s Controller.”

 Todd Ekenstam is a principal engineer at Intuit, building a platform for secure, multitenant Kubernetes infrastructure supporting applications serving Intuit’s approximately 50 million customers. Todd has worked on a variety of large-scale distributed systems projects during his career of more than 25 years, including hierarchical storage management, peer-to-peer database replication, enterprise storage virtualization, and two-factor authentication SaaS. Todd has presented at academic, government, and industry conferences, most recently as a guest speaker on “Introduction to Open Policy Agent” at KubeCon 2018.

 Jesse Suen is a principal engineer on the Intuit Platform team, developing microservices-based, distributed applications for Kubernetes. He was an early engineer at Applatix (acquired by Intuit), building a platform to help users run containerized workloads in the public cloud. Before that, he was part of the engineering team at Tintri and Data Domain, working on virtualized infrastructure, storage, tooling, and automation. Jesse is one of the core contributors to the open source Argo Workflows and Argo CD projects.

about the cover illustration

 The figure on the cover of GitOps and Kubernetes is captioned “Habitant de Styrie,” or resident of Styria. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

 1.https://argoproj.github.io/argo-cd.

 2.https://jenkins-x.io.

 3.https://github.com/fluxcd/flux.

Part 1. Background

 This part of the book covers background and gives you an introduction to GitOps and Kubernetes.

 Chapter 1 walks you through the journey of software deployment evolution and how GitOps became the latest practice. It also covers the many key concepts and benefits of GitOps.

 Chapter 2 provides key concepts of Kubernetes and why its declarative nature is perfect for GitOps. It also covers the core operator concept and how to implement a simple GitOps operator.

 After you grasp the core concepts of GitOps and Kubernetes, you will be ready to dive into the patterns and processes required to adopt GitOps in your deployments. Part 2 covers the GitOps CI/CD pipeline along with environment setup and promotion as well as different deployment strategies. It also covers how you can secure your deployment process and reviews several configuration management tools and various techniques to manage Secrets in GitOps. There is also a chapter devoted to observability as it is related to GitOps.

1 Why GitOps?

 This chapter covers

 	
What is GitOps?

 	
Why GitOps is important

 	
GitOps compared with other approaches

 	
Benefits of GitOps

 Kubernetes is a massively popular open source platform that orchestrates and automates operations. Although it improves the management and scaling of infrastructure and applications, Kubernetes frequently has challenges managing the complexity of releasing applications.

 Git is the most widely used version-control system in the software industry today. GitOps is a set of procedures that uses the power of Git to provide both revision and change control within the Kubernetes platform. A GitOps strategy can play a big part in how quickly and easily teams manage their services’ environment creation, promotion, and operation.

 Using GitOps with Kubernetes is a natural fit, with the deployment of declarative Kubernetes manifest files being controlled by common Git operations. GitOps brings the core benefits of Infrastructure as Code and immutable infrastructure to the deployment, monitoring, and life-cycle management of Kubernetes applications in an intuitive, accessible way.

1.1 Evolution to GitOps

 Two everyday tasks in managing and operating computer systems are infrastructure configuration and software deployment. Infrastructure configuration prepares computing resources (such as servers, storage, and load balancers) that enable the software application to operate correctly. Software deployment is the process of taking a particular version of a software application and making it ready to run on the computing infrastructure. Managing these two processes is the core of GitOps. Before we dig into how this management is done in GitOps, however, it is useful to understand the challenges that have led the industry toward DevOps and the immutable, declarative infrastructure of GitOps.

1.1.1 Traditional Ops

 In a traditional information technology operations model, development teams are responsible for periodically delivering new versions of a software application to a quality-assurance (QA) team that tests the new version and then delivers it to an operations team for deployment. New versions of software may be released once a year, once a quarter, or at shorter intervals. It becomes increasingly difficult for a traditional operations model to support increasingly compressed release cycles.

 The operations team is responsible for the infrastructure configuration and deployment of the new software application versions to that infrastructure. The operations team’s primary focus is to ensure the reliability, resilience, and security of the system running the software. Without sophisticated management frameworks, infrastructure management can be a difficult task that requires a lot of specialized knowledge.

 [image:]

 Figure 1.1 Traditional IT teams are typically composed of separate development, QA, and operations teams. Each team specializes in a different aspect of the application development process.

 it operations IT operations is the set of all processes and services that are both provisioned by an IT staff to internal or external clients and used by the staff to provide a business’s technology needs. Operations work can include responding to tickets generated for maintenance work or customer issues.1

 Because three teams are involved, often with different management-reporting structures, a detailed handoff process and thorough documentation of the application changes are needed to ensure that the application is adequately tested, appropriate changes are made to infrastructure, and the application is installed correctly. These requirements, however, cause deployments to take a long time and reduce the frequency at which deployments can be made. Also, with each transition between teams, the possibility that essential details will not being communicated increases, possibly leading to gaps in testing or incorrect deployment.

 [image:]

 Figure 1.2 In the traditional deployment flow, the development team opens a ticket for the QA team to test a new product version. When the testing is successful, the QA team opens a ticket for the operations team to deploy the latest version to production.

 Fortunately, most development teams compile, test, and produce their deployable artifacts by using automated build systems and a process called continuous integration (CI). But the new code’s deployment is often a manual process performed by the operations team, involving lengthy manual procedures or partial automation through deployment scripts. In a worst-case scenario, the operations engineer manually copies the executable binary file to the needed location on multiple servers and manually restarts the application to make the new binary version take effect. This process is error prone and offers few options for controls such as review, approval, auditability, and rollback.

 Continuous Integration (CI) CI involves automated building, testing, and packaging of software applications. In a typical development workflow, software engineers make code changes that are checked into the central code repository. These changes must be tested and integrated with the main code branch intended to be deployed to production. A CI system facilitates the review, building, and testing of code to ensure its quality before merging to the main branch.

 With the rise of cloud computing infrastructure, the interfaces that manage compute and network resources have become increasingly based on application programming interfaces (APIs), allowing for more automation but requiring more programming skills to implement. This fact, coupled with many organizations’ search for ways to optimize operations, reduce deployment times, increase deployment frequency, and improve their computing systems’ reliability, stability, and performance, led to a new industry trend: DevOps.

1.1.2 DevOps

 DevOps is both an organizational structure and a mindset change with an emphasis on automation. An operations team is no longer responsible for deployment and operation; the application’s development team takes on these responsibilities.

 devops DevOps is a set of software development practices that combine software development (Dev) and IT operations (Ops) to shorten the system development life cycle while delivering features, fixes, and updates frequently in close alignment with business objectives.2

 Figure 1.3 shows how, in a traditional operations model, the organization is divided by functional boundaries, with different teams for development, quality, and operations. In the DevOps model, teams are divided by products or components and are interdisciplinary, containing team members who have skill sets across all functions. Although figure 1.3 indicates team members with a specific role, all members of a high-functioning team practicing DevOps contribute across functions; each member is able to code, test, deploy, and operate their product or component.

 [image:]

 Figure 1.3 The traditional organizational model has separate teams for development, quality, and operations. A DevOps organizational model allows interdisciplinary teams centered on a specific product or component. Each DevOps team is self-sufficient and contains members who have the skills to develop, test, and deploy their application.

 The benefits of DevOps include

 	
 Better collaboration between development and operations

 	
 Improved product quality

 	
 More frequent releases

 	
 Reduced time to market for new features

 	
 Decreased costs of design, development, and operations

 Case study: Netflix

 Netflix was one of the early adopters of the DevOps process, with every engineer being responsible for coding, testing, deployment, and support of their features. Netflix’s culture promotes “Freedom and Responsibility,” which means that every engineer can push releases independently but must ensure the proper operation of that release. All deployment processes are fully automated, so engineers can deploy and roll back with the press of a button. All new features are in end users’ hands as soon as the functionality is complete.

1.1.3 GitOps

 The term GitOps was coined in August 2017 in a series of blogs by Alexis Richardson, cofounder and CEO of Weaveworks.3 Since then, the term has developed significant mindshare in the cloud-native community in general and the Kubernetes community in particular. GitOps is a DevOps process characterized by

 	
 Best practices for deployment, management, and monitoring of containerized applications

 	
 A developer-centric experience for managing applications, with fully automated pipelines/workflows using Git for development and operations

 	
 Use of the Git revision control system to track and approve changes to the infrastructure and run-time environment of applications

 [image:]

 Figure 1.4 The GitOps release workflow starts with creating a branch of the repository containing changes to the definition of the system’s desired state.

 GitHub (along with GitLab, Bitbucket, and so on) is central to the modern software development life cycle, so it seems natural that it is also used for systems operation and management.

 In a GitOps model, the system’s desired configuration is stored in a revision control system, such as Git. Instead of making changes directly to the system via a UI or CLI, an engineer makes changes to the configuration files that represent the desired state. A difference between the desired state stored in Git and the system’s actual state indicates that not all changes have been deployed. These changes can be reviewed and approved through standard revision control processes such as pull requests, code reviews, and merges to master. When changes have been approved and merged to the main branch, an operator software process is responsible for changing the system’s current state to the desired state based on the configuration stored in Git.

 In an ideal implementation of GitOps, manual changes to the system are not permitted, and all changes to the configuration must be made to files stored in Git. In an extreme case, permission to change the system is granted only to the operator software process. The infrastructure and operations engineers’ role in a GitOps model shifts from performing the infrastructure changes and application deployments to developing and maintaining the GitOps automation and helping teams review and approve changes by using Git.

 Git has many features and technical capabilities that make it an ideal choice for use with GitOps:

 	
 Git stores each commit. With proper access control and security configuration (covered in chapter 6), all changes are auditable and tamperproof.

 	
 Each commit in Git represents a complete configuration of the system up to that point in time.

 	
 Each commit object in Git is associated with its parent commit so that as branches are created and merged, the commit history is available when needed.

 Note GitOps is important because it enables traceability of changes made to an environment and enables easy rollback, recoverability, and self-healing with Git, a tool with which most developers are already familiar.

 Git provides the basis to validate and audit deployments. Although it may be possible to implement GitOps by using a version-control system other than Git, Git’s distributed nature, branching and merging strategy, and widespread adoption make it an ideal choice.

 GitOps doesn’t require a particular set of tools, but the tools must offer this standard functionality:

 	
 Operate on the desired state of the system that is stored in Git

 	
 Detect differences between the desired state and the actual state

 	
 Perform the required operations on the infrastructure to synchronize the actual state with the desired state

 Although this book focuses on GitOps in relation to Kubernetes, many of the principles of GitOps could be implemented independently of Kubernetes.

1.2 Developer benefits of GitOps

 GitOps provides many benefits to developers because it allows them to treat the configuration of infrastructure and deployment of code in much the same way that they manage their software development process, and with a familiar tool: Git.

1.2.1 Infrastructure as code

 Infrastructure as code (IaC) is a foundational paradigm for GitOps. The configuration of the infrastructure that runs your applications is accomplished by executing an automated process rather than manual steps.4 In practice, IaC means that infrastructure changes are codified and the source code for the infrastructure is stored in a version-control system. Let’s go through the most notable benefits:

 	
 Repeatability—Everyone who has experience provisioning infrastructure manually agrees that this process is time consuming and error prone. Don’t forget that the same process has to be repeated multiple times, because applications are typically deployed into multiple environments. If a problem is discovered, it is easier to roll back to an earlier working configuration with a repeatable process, allowing quicker recoveries.

 	
 Reliability—The automated process significantly reduces the chance of inevitable human errors, thereby reducing the possibility of outages. When the process is codified, infrastructure quality no longer depends on the knowledge and skill of the particular engineer who is performing the deployment. The automation of the infrastructure configuration can be steadily improved.

 	
 Efficiency—IaC increases the productivity of the team. With IaC, engineers are more productive because they use familiar tools, such as APIs, software development kits (SDKs), version-control systems, and text editors. Engineers can use familiar processes and take advantage of code review and automated testing.

 	
 Savings—The initial implementation of IaC requires significant investment of effort and time. Despite the initial cost, however, it is more cost effective in the long run. The provisioning of infrastructure for the next environment does not require wasting valuable engineer time for manual configuration. Because provisioning is quick and cheap, there is no need to keep unused environments running. Instead, each environment might be created on demand and destroyed when it is no longer needed.

 	
 Visibility—When you define IaC, the code itself documents how the infrastructure should look.

 IaC enables developers to produce higher-quality software while saving time and money. It might be easier to configure the infrastructure manually for one environment, but it will become increasingly challenging to maintain that environment, along with dozens of other environments for your application. Using automated infrastructure provisioning and following IaC principles enables repeatable deployments and prevents run-time issues caused by configuration drift or missing dependencies.

1.2.2 Self-service

 As mentioned previously, in a traditional operations model, infrastructure management is performed by a dedicated team or even a separate organization within the company.

 There is a problem, however: this approach does not scale. The dedicated team will quickly become a bottleneck, no matter how many members it has. Instead of making an infrastructure change themselves, application developers have to file a ticket, send an email, schedule a meeting, and wait. Regardless of the process, a barrier exists, introducing many delays and discouraging the team from proactively proposing infrastructure changes. GitOps aims to break the barrier by automating the process and making it self-service.

 Instead of sending a ticket, when using a GitOps model, the developer works on a solution independently and commits a change to the infrastructure’s declarative configuration in the repository. The infrastructure change does not require cross-team communication anymore, allowing the application development team to move forward much more quickly and have more freedom to experiment. The ability to make infrastructure changes rapidly and independently encourages developers to take ownership of their application infrastructure. Instead of asking a central operations team for a solution, developers can experiment and develop a design that efficiently solves the business requirements.

 [image:]

 Figure 1.5 The development team can change the system’s desired state by updating files stored in the Git repository. These changes are code-reviewed by other team members and merged to the main branch upon approval. The main branch is processed by a GitOps operator that deploys the cluster’s desired configuration.

 Developers don’t get full control to do whatever they want, however, possibly compromising security or reliability. Every change requires creating a pull request that can be reviewed by another member of the application development team, as described in the following sections.

 The advantage of GitOps is that it allows self-service infrastructure changes and provides the right balance between control and development speed.

1.2.3 Code reviews

 Code review is a software development practice in which code changes are proactively examined for errors or omissions by a second pair of eyes, leading to fewer preventable outages. Performing code reviews is a natural process in the software development life cycle with which software engineers doing DevOps/GitOps should be familiar. When the DevOps engineer can treat infrastructure as code, the logical next step is to perform code reviews on the infrastructure changes before deployment. When GitOps is used with Kubernetes, the “code” being reviewed may be primarily Kubernetes YAML manifests or other declarative configuration files, not traditional code written in a programming language.

 Besides error prevention, code reviews provide the following benefits:

 	
 Teaching and sharing knowledge—While reviewing the changes, the reviewer has a chance not only to give feedback, but also to learn something.

 	
 Consistency in design and implementation—During the review, the team can ensure that changes are aligned with the overall code structure and follow the company’s code style guidelines.

 	
 Team cohesion—Code review is not only for criticizing and requesting changes. This process is also an excellent way for team members to give kudos to one another, get closer, and make sure that everyone is fully engaged.

 In a proper code review process, only verified and approved infrastructure changes are committed to the main branch, preventing errors and incorrect modifications to the operating environment. Code review doesn’t necessarily need to be done entirely by humans. The code review process also can run automated tools such as code linters,5 static code analysis, and security tools.

 Note Other automated tools for code and vulnerability analysis are covered in chapter 4.

 Code reviews have long been accepted as a critical part of software development best practices. The key premise of GitOps is that the same rigor of code reviews used in the application code should be applied to changes in the application operational environment.

1.2.4 Git pull requests

 The Git version-control system provides a mechanism in which proposed changes can be committed to a branch or fork and then merged with the main branch through a pull request. In 2005, Git introduced a request-pull command. This command generates a human-readable summary of all the changes, which can be mailed to the project maintainer manually. The pull request collects all the changes to the repository files and presents the differences for code review and approval.

 Pull requests can be used to enforce premerge code reviews. Controls can be put in place to require specific testing or approval before a pull request is merged to the main branch. Like code reviews, pull requests are a familiar process in the software development life cycle that software engineers likely already use.

 Figure 1.6 demonstrates the typical pull request life cycle:

 	
 The developer creates a new branch and starts working on the changes.

 	
 When changes are ready, the developer sends a pull request for code review.

 	
 Team members review the pull request and request more changes (if needed).

 	
 The developer keeps making changes in a branch until the pull request is approved.

 	
 The project maintainer merges the pull request into the main branch.

 	
 After the merge, the branch used for the pull request may be deleted.

 [image:]

 Figure 1.6 The pull request life cycle allows multiple rounds of code review and revisions until the changes are approved. Then the changes may be merged to the main branch and the pull request branch deleted.

 The review step is especially interesting when applied to an infrastructure change review. After the pull request is created, the project maintainers receive a notification and review the proposed changes. As a result, reviewers ask questions, receive answers, and possibly request more changes. That information is typically stored and available for future reference, so now the pull request is a live documentation of an infrastructure change. In case of an incident, it is straightforward to find out who made the change and why it was applied.

1.3 Operational benefits of GitOps

 Combining a GitOps methodology with Kubernetes’ declarative configuration and active reconciliation model provides many operational benefits that provide a more predictable and reliable system.

1.3.1 Declarative

 One of the most prominent paradigms to emerge from the DevOps movement is the model of declarative systems and configuration. Simply put, with declarative models, you describe what you want to achieve as opposed to how to get there. By contrast, in an imperative model, you describe a sequence of instructions for manipulating the system to reach your desired state.

 To illustrate this difference, imagine two styles of a television remote control: an imperative style and a declarative style. Both remotes can control the TV’s power, volume, and channel. For the sake of discussion, assume that the TV has only three volume settings (loud, soft, mute) and only three channels (1, 2, 3).

 [image:]

 Figure 1.7 This figure illustrates the differences between imperative and declarative remote controls. The imperative remote lets you perform operations such as “Increment the channel by 1” and “Toggle the state of the power.” By contrast, the declarative remote lets you perform operations such as “Tune to channel 2” or “Set the state of the power to off.”

 Imperative remote example

 Suppose that you had the simple task of changing to channel 3 with both remotes. To accomplish this task with the imperative remote, you would use the channel-up button, which signals the TV to increment the current channel by 1. To reach channel 3, you would keep pressing the channel-up button some number of times until the TV reached the desired channel.

 Declarative remote example

 By contrast, the declarative remote provides individual buttons that jump directly to the specific numbered channel. In this case, to switch to channel 3, you would press the channel- 3 button once, and the TV would be on the correct channel. You are declaring your intended end state (I want the TV to be tuned to channel 3). With the imperative remote, you describe the actions that you need to be performed to achieve your desired state (keep pressing the channel-up button until the TV is tuned to channel 3).

 You may have noticed that in the imperative approach to changing channels, the user must consider whether to continue pushing the channel-up button, depending on the channel to which the TV is currently tuned. In the declarative approach, however, you can press the channel-3 button without a second thought because that button on the declarative remote is considered to be idempotent (and the channel-up button on the imperative remote is not).

 IDEMPOTENCY Idempotency is a property of an operation whereby the operation can be performed any number of times and produce the same result. In other words, an operation is said to be idempotent if you can perform the operation an arbitrary number of times, and the system is in the same state as it would be if you had performed the operation only once. Idempotency is one of the properties that distinguish declarative systems from imperative systems. Declarative systems are idempotent; imperative systems are not.

1.3.2 Observability

 Observability is the ability to examine and describe a system’s current running state and be alerted when unexpected conditions occur. Deployed environments are expected to be observable. In other words, you should always be able to inspect an environment to see what is currently running and how things are configured. To that end, service and cloud providers provide a fair number of methods to promote observability (including CLIs, APIs, GUIs, dashboards, alerts, and notifications), making it as convenient as possible for users to understand the current state of the environment.

 [image:]

 Figure 1.8 Observability is the operator’s ability (perhaps human or automated) to determine an environment’s running state. The operator can make informed decisions about what changes to the environment are needed only once if the environment’s current running state is known. Proper control of an environment requires observability of that environment.

 Although these observability mechanisms can help answer the question, “What’s currently running in my environment?” they cannot answer the question, “For the resources currently configured and running in my environment, are they supposed to be configured and running in that way?” If you have ever held duties as a systems administrator or operator, you’re likely to be all too familiar with this problem. At one point or another—typically, when troubleshooting an environment—you come across a suspicious configuration setting and think that it doesn’t seem right. Did someone (possibly you) accidentally or mistakenly change this setting, or is the setting intentional?

 In all likelihood, you may already be practicing a fundamental principle of GitOps: storing a copy of your application configuration in source control and using it as a source of truth for the desired state of your application. You may not be storing this configuration in Git to drive continuous deployment—only to have a copy duplicated somewhere so that the environment can be reproduced, such as in a disaster recovery scenario. This copy can be thought of as the desired application state, and aside from the disaster recovery use case, it serves another useful purpose: it enables operators to compare the actual running state with the desired state held in source control at any point in time to verify that the states match.

 [image:]

 Figure 1.9 If the environment’s running state can be observed, and the desired state of the environment is defined in Git, the environment can be verified by comparing the two states.

 The ability to verify your environment is a core tenet of GitOps that has been formalized as a practice. By storing your desired state in one system (such as Git) and regularly comparing that desired state with the running state, you unlock a new dimension of observability. Not only do you have the standard observability mechanisms provided by your provider, but also, you are able to detect divergence from the desired state.

 Divergence from your desired state, also called configuration drift, can happen for any number of reasons. Common examples include mistakes made by operators, unintended side effects due to automation, and error scenarios. Configuration drift could even be expected, such as a temporary state caused by a transition period (maintenance mode, for example).

 But the most significant reason for a divergence in configuration could be malicious. In the worst case, a bad actor could have compromised the environment and reconfigured the system to run a malicious image. For this reason, observability and verification are crucial for the security of the system. Unless you have a source of truth of your desired state in place, and without a mechanism to verify convergence to that source of truth, it is impossible to know that your environment is truly secure.

1.3.3 Auditability and compliance

 Allowing for compliance and auditability is a must for organizations that do business in countries whose laws and regulations affect information management and frameworks for assessing compliance—which is most countries in this day and age. Some industries are more regulated than others, but almost all companies need to comply with basic privacy and data security laws. Many organizations have to invest substantially in their processes and systems to be compliant and auditable. With GitOps and Kubernetes, most of the compliance and auditability requirements can be satisfied with minimal effort.

 Compliance refers to verifying that an organization’s information system meets a particular set of industry standards, typically focused on customer data security and adherence to the organization’s documented policies on the people and systems that have access to that customer data. Chapter 6 covers access control in depth, and chapter 4 covers pipelines to define and enforce your deployment process for compliance.

 Auditability is a system’s capability to be verified as being compliant with a set of standards. If a system can’t be shown to an internal or external auditor to be compliant, no statement about the system’s compliance can be made. Chapter 8 covers observability, including using the Git commit history and Kubernetes events for auditability.

 Case study: Facebook and Cambridge Analytica

 Cambridge Analytica, a political data firm hired by President Trump’s 2016 election campaign, gained improper access to the private information of more than 50 million Facebook users. The data was used to generate a personality score for each user and match that user with US voter records. Cambridge Analytica used this information for its voter profiling and targeted advertising services. Facebook was found not to have implemented the proper controls required to enforce data privacy and was eventually fined $5 billion by the Federal Trade Commission due to the breach.a

 a https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions

 Auditability also refers to an auditor’s ability to achieve a comprehensive examination of an organization’s internal controls. In a typical audit, the auditor requests evidence to ensure that rules and policies are enforced accordingly. Evidence could include the process of restricting access to user data, the handling of personally identifiable information (PII), and the integrity of the software release process.

 [image:]

 Figure 1.10 In a traditional audit process, it is often difficult to determine the system’s desired state. Auditors may need to look at various sources of this information, including documentation, change requests, and deployment scripts.

 Case study: Payment Card Industry Data Security Standard

 The Payment Card Industry Data Security Standard (PCI DSS) is an information security standard for organizations that handle branded credit cards from the major card networks. Violation of the PCI DSS could result in steep fines and, in the worst case, suspension from credit card processing. PCI DSS dictates that “access control systems are configured to enforce privileges assigned to individuals based on job classification and function.” During an audit, organizations need to provide evidence that access control systems are in place for PCI compliance.a

 a https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

 What does all that have to do with GitOps?

 Git is version-control software that helps organizations manage changes and access control to their code. Git keeps track of every modification to the code in a special kind of database designed to preserve the managed source code’s integrity. The files’ content and the true relationships among files and directories, versions, tags, and commits in the Git repository are secured with the Secure Hash Algorithm (SHA) checksum hashing algorithm. This algorithm protects the code and the change history from both accidental and malicious change and ensures that the history is fully traceable.

 Git’s history tracking also includes the author, date, and written notes on each change’s purpose. With well-written commit comments, you know why a particular commit was made. Git can also integrate with project management and bug-tracking software, allowing full traceability of all changes and enabling root-cause analysis and other forensics.

 As mentioned earlier, Git supports the pull request mechanism, which prevents any single person from altering the system without approval by a second person. When the pull request is approved, changes are recorded in the secured Git change history. Git’s strength in change control, traceability, and change history authenticity, along with Kubernetes’ declarative configuration, naturally satisfy the security, availability, and processing integrity principles needed for auditability and compliance.

 [image:]

 Figure 1.11 With GitOps, the audit process can be simplified because the auditor can determine the system’s desired state by examining the source code repository. The current state of the system can be determined by reviewing the hosting service and Kubernetes objects.

1.3.4 Disaster recovery

 Disasters happen for many reasons and take many forms. A disaster may be naturally occurring (an earthquake hitting a data center), caused by an equipment failure (loss of hard drives in a storage array), accidental (a software bug corrupting a critical database table), or even malicious (a cyberattack causing data loss).

 GitOps helps in the recovery of infrastructure environments by storing declarative specifications of the environment under source control as a source of truth. Having a complete definition of what the environment should be facilitates the re-creation of the environment in the event of a disaster. Disaster recovery becomes a simple exercise of (re)applying all the configuration stored in the Git repository. You might observe that there is not much difference between the procedures followed during a disaster versus those used in routine day-to-day upgrades and deployments. With GitOps, you are in effect practicing disaster recovery procedures on a regular basis, making you well prepared if a real disaster strikes.

 Importance of Data Backups Although GitOps helps simplify disaster recovery for computing and networking infrastructure, recovery of persistent and stateful applications needs to be handled differently. There is no substitute for traditional disaster recovery solutions for storage-related infrastructure: backups, snapshotting, and replication.

Summary

 	
 GitOps is a DevOps deployment process that uses Git as the system of record to manage deployment in complex systems.

 	
 Traditional Ops requires a separate team for deployment, and a new version can take days (if not weeks) to be deployed.

 	
 DevOps enables engineers to deploy a new version as soon as the code is complete without waiting for a centralized operations team.

 	
 GitOps provides full traceability and release control.

 	
 Declarative models describe what you want to achieve instead of the steps necessary to achieve it.

 	
 Idempotency is a property of an operation whereby the operation can be performed any number of times and produce the same result.

 	
 Additional GitOps benefits include

 	
Pull requests for code quality and release control

 	
Observable running state and desired state

 	
Simplified compliance and auditability process with historical authenticity and traceability

 	
Straightforward disaster recovery and rollback procedures that are consistent with the familiar deployment experience

 1.https://en.wikipedia.org/wiki/Data_center_management#Operations.

 2.https://en.wikipedia.org/wiki/DevOps.

 3.https://www.weave.works/blog/gitops-operations-by-pull-request.

 4.https://www.hashicorp.com/resources/what-is-infrastructure-as-code.

 5.https://en.wikipedia.org/wiki/Lint_(software).

2 Kubernetes and GitOps

 This chapter covers

 	
Solving problems with Kubernetes

 	
Running and managing Kubernetes locally

 	
Understanding the basics of GitOps

 	
Implementing a simple Kubernetes GitOps operator

 In chapter 1, you learned about Kubernetes and why its declarative model makes it an excellent match to be managed using GitOps. This chapter will briefly introduce Kubernetes architecture and objects and the differences between declarative and imperative object management. By the end of this chapter, you will implement a basic GitOps Kubernetes deployment operator.

OEBPS/OEBPS/Images/CH01_F10_Yuen.png

OEBPS/OEBPS/Images/CH01_F01_Yuen.png

OEBPS/OEBPS/Images/cover.jpeg

OEBPS/OEBPS/Images/CH01_F02_Yuen.png

OEBPS/OEBPS/Images/CH01_F07_Yuen.png

OEBPS/OEBPS/Images/CH01_F04_Yuen.png

OEBPS/OEBPS/Images/IFC_F01_Yuen.png

OEBPS/OEBPS/Images/CH01_F03_Yuen.png

OEBPS/OEBPS/Images/CH01_F06_Yuen.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/FM_F01_Yuen.png

OEBPS/OEBPS/Images/CH01_F11_Yuen.png

OEBPS/OEBPS/Images/CH01_F09_Yuen.png

OEBPS/OEBPS/Images/CH01_F08_Yuen.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F12_Yuen.png

