

 Praise for the First Edition

 … masterfully blends the basics of programming with the effective use of AI tools to produce code.

 —Mehran Sahami, Stanford University

 This is such a well-thought-out book from the point of view of someone just starting to code post generative AI tools.

 —Ana Bell, MIT

 You are about to learn programming with one of the most exciting human task supporters of this centur… .

 —From the foreword by Beth Simon, UC San Diego

 This book accelerates your Copilot programming learning journey beyond what I ever thought possible.

 —Austin Z. Henley, Carnegie Mellon University

 This book is an excellent first, forward-thinking step toward working with, not futilely fighting against, the AI-assisted programming boom.

 —Max Fowler, University of Illinois at Urbana-Champaign

 You cannot compete with AI, instead you should learn how to complement your work with AI. This book is a great resource to get you started on that journey.

 —Srihari Sridharan, Thoughtworks

 An amazing textbook about how to learn Python programming with AI, written by expert teachers. AI is revolutionizing the way we learn to program. Get on board with Leo Porter and Daniel Zingaro.

 —Mikael Dautrey, ISITIX

 Embracing the future of programming education, this book is a beacon for educators navigating the brave new world of LLMs. Essential reading for the modern classroom.

 —Ildar Akhmetov, Khoury College of Computer Sciences

 [image: manning]

 Learn AI-Assisted Python Programming, Second Edition

 Leo Porter and Daniel Zingaro

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Rebecca Johnson
 Technical editor: Peter Morgan
 Review editor: Dunja Nikitović
 Production editor: Kathy Rossland
 Copy editor: Julie McNamee
 Proofreader: Mike Beady
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633435995

 Printed in the United States of America

 dedication

 Dan thanks his wife, Doyali, for trading some of their time, again, to help this book exist.

 Leo thanks his wife, Lori, and his children, Sam and Avery, for their love and support.

 contents

 foreword

 acknowledgments

 introduction

 about the authors

 about the cover illustration

 1 Introducing AI-assisted programming with GitHub Copilot

 1.1 Improving how we talk to computers

 1.1.1 Making it a little easier

 1.1.2 Making it a lot easier

 1.2 About the technology

 1.2.1 Python, your programming language

 1.2.2 GitHub Copilot, your AI assistant

 1.2.3 How Copilot works behind the scenes—in 30 seconds

 1.3 How Copilot changes how we learn to program

 1.4 What else can Copilot do for us?

 1.5 Risks and challenges when using Copilot

 1.6 The skills we need

 1.7 Societal concerns about AI code assistants like Copilot

 2 Getting started with Copilot

 2.1 Setting up your computer to start learning

 2.2 The software we’ll be using

 2.2.1 Python

 2.2.2 Visual Studio Code

 2.2.3 GitHub account

 2.3 Getting your system set up: Part 1

 2.4 Working with Python in Visual Studio Code

 2.4.1 Set up your working folder

 2.4.2 Check to see if your setup is working properly

 2.5 Writing and running some small programs

 2.6 Getting your system set up: Part 2

 2.6.1 Check to see if Copilot is working properly

 2.7 Addressing common Copilot challenges

 2.8 Our path forward

 2.8.1 How we’ll be working with Copilot throughout the book

 2.8.2 Showcasing Copilot’s value in a data processing task

 3 Designing functions

 3.1 Functions

 3.1.1 The components of a function

 3.1.2 Using a function

 3.2 The design cycle of functions with Copilot

 3.3 Examples of creating good functions with Copilot

 3.3.1 Dan’s stock pick

 3.3.2 Leo’s password

 3.3.3 Getting a strong password

 3.3.4 Scrabble scoring

 3.3.5 The best word

 3.4 Benefits of functions

 3.5 Roles of functions

 3.6 What’s a reasonable task for a function?

 3.6.1 Attributes of good functions

 3.6.2 Examples of good (and bad) leaf functions

 3.7 Exercises

 4 Reading Python code: Part 1

 4.1 Why we need to read code

 4.2 Asking Copilot to explain code

 4.3 Top 10 programming features you need to know: Part 1

 4.3.1 #1. Functions

 4.3.2 #2. Variables

 4.3.3 #3. Conditionals

 4.3.4 #4. Strings

 4.3.5 #5. Lists

 4.4 Exercises

 5 Reading Python code: Part 2

 5.1 Top 10 programming features you need to know: Part 2

 5.1.1 #6. Loops

 5.1.2 #7. Indentation

 5.1.3 #8. Dictionaries

 5.1.4 #9. Files

 5.1.5 #10. Modules

 5.2 Exercises

 6 Testing and prompt engineering

 6.1 Why it’s crucial to test code

 6.2 Closed-box and open-box testing

 6.2.1 Closed-box testing

 6.2.2 How do we know which test cases to use?

 6.2.3 Open-box testing

 6.3 How to test your code

 6.3.1 Testing using the Python prompt

 6.3.2 Testing in your Python file (we won’t be doing it this way)

 6.3.3 doctest

 6.4 Revisiting the cycle of designing functions with Copilot

 6.5 Full testing example

 6.5.1 Finding the most students we can add to a row

 6.5.2 Improving the prompt to find a better solution

 6.5.3 Testing the new solution

 6.6 Another full testing example: Testing with files

 6.6.1 What tests should we run?

 6.6.2 Creating the function

 6.6.3 Testing the function

 6.6.4 Common challenges with doctest

 6.7 Exercises

 7 Problem decomposition

 7.1 Problem decomposition

 7.2 Small examples of top-down design

 7.3 Spelling suggestions

 7.4 Spelling suggestions using top-down design

 7.5 Breaking down the process subproblem

 7.5.1 Getting the list of words from the word list file

 7.5.2 Generating the list of all possible words

 7.5.3 Generating the list of all real words

 7.6 Summary of our top-down design

 7.7 Implementing our functions

 7.7.1 create_word_list

 7.7.2 add_letter

 7.7.3 delete_letter

 7.7.4 change_letter

 7.7.5 all_possible_words

 7.7.6 all_real_words

 7.7.7 get_spelling_suggestions

 7.7.8 spell_check

 7.8 Exercises

 8 Debugging and better understanding your code

 8.1 What causes errors (bugs)?

 8.2 How to find the bug

 8.2.1 Using print statements to learn about the code behavior

 8.2.2 Using VS Code’s debugger to learn about the code behavior

 8.3 How to fix a bug (once found)

 8.3.1 Asking Copilot to fix your bug via Copilot Chat

 8.3.2 Giving Copilot a new prompt for the whole function

 8.3.3 Giving Copilot a targeted prompt for part of a function

 8.3.4 Modifying the code to fix the bug yourself

 8.4 Modifying our workflow in light of our new skills

 8.5 Applying our debugging skills to a new problem

 8.6 Using the debugger to better understand code

 8.7 A caution about debugging

 8.8 Exercises

 9 Automating tedious tasks

 9.1 Why programmers make tools

 9.2 How to use Copilot to write tools

 9.3 Example 1: Cleaning up email text

 9.3.1 Conversing with Copilot

 9.3.2 Writing the tool to clean up email

 9.4 Example 2: Adding cover pages to PDF files

 9.4.1 Conversing with Copilot

 9.4.2 Writing the tool

 9.5 Example 3: Merging phone picture libraries

 9.5.1 Conversing with Copilot

 9.5.2 Top-down design

 9.5.3 Writing the tool

 9.6 Exercises

 10 Making some games

 10.1 Game programs

 10.2 Adding randomness

 10.3 Example 1: Bulls and Cows

 10.3.1 How the game works

 10.3.2 Top-down design

 10.3.3 Parameters and return types

 10.3.4 Implementing our functions

 10.3.5 Adding a graphical interface for Bulls and Cows

 10.4 Example 2: Bogart

 10.4.1 How the game works

 10.4.2 Top-down design

 10.4.3 Implementing our functions

 10.5 Exercises

 11 Creating an authorship identification program

 11.1 Authorship identification

 11.2 Authorship identification using top-down design

 11.3 Breaking down the process subproblem

 11.3.1 Figuring out the signature for the mystery book

 11.4 Summary of our top-down design

 11.5 Implementing our functions

 11.5.1 clean_word

 11.5.2 average_word_length

 11.5.3 different_to_total

 11.5.4 exactly_once_to_total

 11.5.5 split_string

 11.5.6 get_sentences

 11.5.7 average_sentence_length

 11.5.8 get_phrases

 11.5.9 average_sentence_complexity

 11.5.10 make_signature

 11.5.11 get_all_signatures

 11.5.12 get_score

 11.5.13 lowest_score

 11.5.14 process_data

 11.5.15 make_guess

 11.6 Going further

 11.7 Exercises

 12 Future directions

 12.1 Prompt patterns

 12.1.1 Flipped interaction pattern

 12.1.2 Persona pattern

 12.2 Limitations and future directions

 12.2.1 Where Copilot (currently) struggles

 12.2.2 Is Copilot a new programming language?

 12.3 Exercises

 index

 foreword

 It’s an awesome time to learn programming. Why? Let me use an analogy to explain.

 I like to make my own bread. I make it more frequently, and more reliably, when I use my stand mixer to knead the dough compared to kneading it by hand. Maybe you’d say that’s lazy. I’d say it makes me more productive and more likely to actually make the bread. Maybe you have something that makes your life easier by taking over a tedious task, leaving you free to focus on more important or interesting things. Do you have a car that supports you in parallel parking? I recall when Gmail added spell and grammar checks in languages other than English. My husband’s German relatives were so excited that he was writing them longer emails—because the effort of remembering little-used German language specifics went away and allowed him to spend more time on the content!

 Sadly, until recently, when learning programming, you had no equivalent of a stand mixer or grammar check to support you. And there are lots of tedious things to learn and remember when you start programming.

 Good news! As of spring 2023, radically new and (we think) effective support is finally here. You are about to learn programming with one of the most exciting human task supporters so far this century: artificial intelligence. Specifically, this book seeks to support you in developing your ability to program in Python to solve computational problems more easily and faster by using a tool called GitHub Copilot. GitHub Copilot is a programming support tool that uses something called a large language model (LLM) to draw “help” from a huge number of previously written programs. Once you learn how to direct it (sadly, it’s more complicated than effectively using a stand mixer), Copilot can dramatically increase your productivity and success in writing programs to solve your problem.

 But should you use Copilot? Are you really learning to program if you use it? Preliminary evidence looks positive—showing that students who learned with Copilot, when assigned a programming task, did better than students assigned the task who learned without Copilot [1]. That said, compared to what we used to teach in an introductory programming class, there are different skills you will need to focus on when programming with Copilot, specifically problem decomposition and debugging (it’s OK if you don’t know what those are). Just know, practicing programmers need to know those skills as well, but we previously weren’t able to teach them explicitly or effectively in introductory courses because students didn’t have the brain space left for learning these “high-level skills” while focusing on nitpicky things like spelling and grammar (programming languages have these, just like world languages).

 Leo and Dan are expert computing educators and researchers; the decisions they’ve made to guide your learning in this book are grounded in what we know about teaching and learning programming. With this new, updated version of the book, they are integrating up-to-date and easier-to-use tools and also improving materials based on having taught introductory programming courses using this book at both of the universities where they work. I’m excited that, with this book, they’re making the new wave of programming courses accessible to readers around the world.

 So, congratulations! Whether you’ve never done any programming or whether you started to learn before and got frustrate… . we think you’ll find learning to program with Copilot transformative, allowing you to engage your brain in more meaningful and “expert-like” programming experiences!

 —Beth Simon

 Professor, University of California San Diego

 acknowledgments

 Writing a book about technology in flux was new for us. Each day of writing started with us reading the new articles, opinion pieces, and capabilities of large language models (LLMs). Early plans had to be scrapped or revised. New ideas presented themselves for later chapters only after we’d written earlier chapters and had access to the latest LLM features. We thank the entire Manning Publications team for their agility and help throughout the process.

 In particular, we thank our development editor, Rebecca Johnson, for her expertise, wisdom, and support. Rebecca provided insightful feedback, constructive criticism, and creative suggestions that have greatly improved the quality and clarity of our work.

 Rebecca was supportive and encouraging, and she helped us manage book timelines and our busy schedules. Thank you, Rebecca—you went above and beyond for us.

 We also thank our technical editor, Peter Morgan, who offered valuable contributions to the quality of the book. Peter Morgan is the founder of the AI consulting company Deep Learning Partnership based in London. He has been working in AI for the past 10 years and before that spent 10 years as a solutions architect for companies such as Cisco Systems and IBM. Peter has written several reports, papers, and book chapters on AI, physics, and quantum computing.

 We thank Naaz Sibia for her help with the book exercises.

 And many thanks to our colleagues for supporting our work and offering their ideas for what such a book should attempt to do. Many of their ideas have informed our thinking as we sought to redefine what an introductory programming course looks like. We particularly thank Brett Becker, Michelle Craig, Paul Denny, Bill Griswold, Philip Guo, and Gerald Soosai Raj.

 introduction

 Software is essential today. It’s hard to think of any industry where software isn’t changing practically everything about how work is done. Manufacturing needs software to monitor production and shipping, let alone the robots that increasingly perform the actual task. Advertising, politics, and fitness, among others, are awash in big data and they routinely use software to make sense of it. Video games and movies are created using software. We could go on and on, but you get the point.

 The result has been that more people than ever want to learn how to program. We’re not just talking about the computer science, computer engineering, and data science majors at universities who have been in a perpetual “enrollment crisis” for the past decade. We’re also talking about the scientist who needs to write software to evaluate their data, the office worker who wants to automate some of their tedious data processing tasks, and the hobbyist who wants to create a fun video game for their friends.

 Despite the desire to learn programming, there are decades of research in our field (computing education) that have identified many reasons for why learning to write software is hard. Even after you figure out how to solve the problem, you have to tell a machine how to accomplish it in a programming language whose rules are unforgiving. Granted, writing programs in a language like Python is substantially easier than in machine code using punch cards, but it’s still hard. We know it’s hard because we’ve seen the failure rates of introductory computer science courses. We’ve watched motivated and intelligent students fail our courses, sometimes multiple times, before they succeed or, worse, give up.

 But what if we could talk to computers in a better way? A way that doesn’t require us to know all the detailed syntax rules that trip up most novices. That era has just begun thanks to AI assistants such as GitHub Copilot that offer intelligent code suggestions in the same way ChatGPT can write reasonable text when prompted. This book is for everyone who wants to learn how to write software in the AI assistant era. We’re excited to be on your learning journey with you.

 AI assistants change how programming is done

 We’ll introduce you to your AI assistant, GitHub Copilot, in chapter 1, but we want to give you a brief overview now. If you read the news headlines or even opinion pieces by lauded software engineering professionals talking about GitHub Copilot or ChatGPT, you’ve seen that opinions run the gamut. Some people say that AI assistants mean the end of all programming jobs. Others say that AI assistants are so hopelessly flawed you are better off without them. These views of the world are at such extremes that it’s easy to poke holes in either argument. AI assistants learn from existing code, so if some new tool/technology is developed, humans will need to write the bulk of the initial code. As a recent article well expressed, there isn’t a lot (or any) code out there for quantum computers because they are still in their infancy [1]. So human programmers aren’t going away, at least not any time soon. At the same time, in our time working with GitHub Copilot, we’ve seen how powerful it is. Both of us have written software for decades, and GitHub Copilot can often give us correct code much faster than we could write it on our own. To ignore such a powerful tool seems analogous to a carpenter refusing to use power tools.

 As educators, the opportunity to help people learn to write software is instantly apparent. Why should learners spend so much time fighting with syntax when the code suggested by an AI assistant is almost always syntactically correct? Why should learners have to reach out to professors, instructional staff, friends, or internet forums for help explaining what a section of code is doing when AI assistants are really good at explaining code (particularly for questions asked by novices)? And if AI assistants often write correct code when solving common programming problems (by learning from huge volumes of code written in the past), why shouldn’t learners be using it to help them program?

 Be warned that this doesn’t mean that writing software is now just easy and that we can entirely offload the skill of programming onto the AI. Instead, the skills to write good software are evolving. Skills such as problem decomposition, code specification, code reading, and code testing have become even more important than they were in the past; skills such as knowing library semantics and syntax become less important. We’ll say more about this in the next chapters, but this book will teach you the skills that matter going forward. These skills will be valuable whether you dabble in writing software from time to time or you are starting a career in software engineering.

 Audience

 We have two primary audiences for the book. The first is everyone who has thought about writing software (and even tried and failed before) to make their lives better in some way. This includes the accountant who gets frustrated that their software can’t do what they want so they are left solving problems by hand, or scientists who want to analyze their data quickly, but existing tools aren’t capable of doing what they want. We also imagine the office manager who feels limited by what their spreadsheet software can do and wants a better way to gain insight from their data. Additionally, we imagine the exec at a small company who wants to be notified when something is said publicly on social media about their company but can’t afford to pay a software engineering team to write the tool for them. And, we imagine the hobbyist of any age who just wants to write software for fun—whether it be for making their own small video games, storytelling with pictures, or creating fun family photo collages. These are just some of the people who want to write software to improve some element of their professional or personal lives.

 The second audience is the learner who is considering a career in software engineering or programming and wants to learn how to write software. They want to learn the basics and start creating interesting software, without the trappings of a classic computer science class. Certainly, there will be more courses or books that will follow this first book on the road to becoming a professional software developer, but this will hopefully be a fun and rewarding first step.

 What we expect from you

 This book requires no background whatsoever in programming. If you learned some programming and forgotten it, or it didn’t go well the first time, we think this is a great place to resume your learning.

 This book does require basic computer literacy. This means you should be comfortable installing software, copying files between folders, and opening files on your computer. If you don’t have those skills, you could still start this book, but realize there may be moments when you need to look to outside resources (e.g., YouTube videos on how to copy a file from one folder to another).

 You’ll also need a computer where you have permission to install software so you can follow along and apply the ideas we’re learning. Any Windows, Mac, or Linux personal computer or laptop will work.

 What you will be able to do after reading this book

 In this book, we’re going to teach you how to use GitHub Copilot to write Python code. We’ll teach you how to identify whether that code does what you want, and what to do when it doesn’t. We’ll teach you enough about Python to be able to read it for a general understanding of what it does and whether it’s doing something potentially meaningful.

 We won’t, however, teach you how to program in Python entirely from scratch. You’ll be in a good position to learn to do that with other resources following this book if you like, but for many tasks, as we will show you, it may not be necessary.

 We don’t know exactly what it will look like to be a professional programmer or software engineer in light of AI coding assistants. That role is already changing and will change further as the AI technology improves. For now, you need more than this book to be a professional programmer or software engineer. You’ll need to know a great deal more about Python and other computer science topics to get there.

 The good news is that learning how to program using GitHub Copilot will make you capable of writing basic software to address common needs. The software will be more complex than what we typically teach in an introductory course, and you’ll be able to write these useful programs without banging your head on syntax or spending months learning just Python. If you want to continue learning about writing professional software, this will be your first step toward mastery. By the end of this book, you’ll be able to write basic software capable of data analysis, automating repetitive tasks, and creating simple games, among many others.

 The challenge in working with AI assistants

 We expect you’re ready to jump into a technology that is maturing and changing quickly. What you see from GitHub Copilot may not match what you see in this book. GitHub Copilot is advancing and changing daily, and we can’t possibly keep up to the minute with such a moving target. More than that, GitHub Copilot is nondeterministic, which means that if you ask it to solve the same task multiple times, it may not give you the same code each time. Sometimes you’ll get correct code for a task, but then if you ask again, you get code that isn’t correct. So even if you use the exact same prompts we do, you’ll likely see different code responses than we do. Much of this book is devoted to ensuring you learn how to determine whether the answer from GitHub Copilot is right or not and, if it isn’t, how to fix it. In short, we hope you’re ready to learn on the leading edge of technology.

 Why we wrote this book

 Both of us have been professors for over a decade and programmers for a decade longer than that. Our care for our students’ success led us to become researchers studying how students learn computing and how to improve their outcomes. Between the two of us, we’ve written nearly a hundred articles in our field exploring pedagogies, student beliefs, and assessments—all with the goal of improving the student experience.

 We’ve also had students in our office hours who struggle to learn how to program, even when we are employing best practices in teaching computing. These are intelligent students who want to learn, but who are tripped up on some part of the programming process. The programming process has many steps, from understanding a problem, to coming up with a solution, to imparting the process of solving the problem to a computer. So, when we began working with AI assistants, specifically GitHub Copilot, we instantly saw how it could be a game changer for students, particularly in improving that last step of “imparting the process of solving the problem to a computer.” We want our students to succeed. We want you to succeed. And, we believe AI assistants can help.

 Warning: Beware of elitism

 One of the saddest things we see in our classes at our universities is students intimidating other students. We’ve heard students in our introductory Python programming courses try to show off how they already learned to program in such-and-such programming language and the effect that has on the other students in the course. Although we try to gently point these students to other, more appropriate courses, we’ve also seen that the students bragging in this way are often the students struggling to pass at the end of the term, having vastly overestimated their proficiency at the start. It doesn’t take a licensed psychologist to see that this kind of posturing comes from a place of low self-esteem.

 Beyond students in our introductory courses, we see how different kinds of programmers treat each other and their respective fields. For example, Human-Computer Interaction (HCI) professionals study how to improve the design of software to make it better for its human users. Sounds important, right? Unfortunately, that field was put down by computer scientists as merely “applied psychology” for years, and then major companies showed that maybe, just maybe, if you care about the users of your technology, those people might just appreciate it more and be inclined to buy it. It’s not surprising that HCI quickly became mainstream in computer science. This snobbery isn’t limited to specific fields. We even see it occurring between programmers of different languages. For example, we’ve seen C++ (one programming language) programmers say silly things like JavaScript (another programming language) programming isn’t real programming. (It definitely is real programming, whatever that might mean!)

 All of this, in our opinion, is unproductive and unfortunate posturing that pushes people away from the field. A comic we both enjoy called XKCD captured the ludicrousness of this posturing well in “Real Programmers” [2]. In the comic, programmers argue about what the best text editor app is for programming. Programmers need to use a text editor to enter their code, which is exactly what you’ll start doing in chapter 2. There’s been a long-standing, and mostly unserious, debate over the best editors (“emacs” is one of many editors). The comic is making light of the meaninglessness of the debate in a truly clever way.

 We’re talking about this unfortunate aspect of our field because we know what some people will say about learning to program with GitHub Copilot. They’ll say that to learn to write software, you have to learn how to write code entirely from scratch. And, for future professional engineers, we actually agree that at some point in your career, you should learn to write code from scratch. But, for most people and even people starting their studies in software engineering, we wholeheartedly disagree that writing code entirely from scratch makes sense anymore as a starting place. So, if someone criticizes you for doing something to make yourself, your life, or the world better, we encourage you to look to the immortal wisdom of Taylor Swift and just “shake it off.”

 How this book is organized: A road map

 This book is divided into 12 chapters. We recommend that you read this book from beginning to end, rather than skipping around, because most chapters introduce skills that will be assumed in later chapters:

 	 Chapter 1 describes what AI code assistants are, how they work, and why they are irrevocably changing how programming is done. It also explores the concerns we need to keep in mind when using AI coding assistants.

 	 Chapter 2 helps you set up your computer to be able to program with Python (that’s the programming language we’ll use) and GitHub Copilot (that’s your AI coding assistant). Once your computer is set up, we’ll use GitHub Copilot in our first programming example: doing some analysis on freely available sports data.

 	 Chapter 3 teaches you all about functions, which help you organize your code and make it easier for GitHub Copilot to write code for you. It also uses many examples to demonstrate the general workflow we’ll use to be productive with GitHub Copilot.

 	 Chapter 4 is the first of two chapters that teaches you how to read Python code. It’s true that GitHub Copilot will be writing code for you, but you need to be able to read that code to help you determine whether that code is going to do what you want. Don’t worry, GitHub Copilot can help you read code too!

 	 Chapter 5 is the second of two chapters that teaches you how to read Python code.

 	 Chapter 6 is a primer on two critical skills that you need to hone when working with AI coding assistants: testing and prompt engineering. Testing involves checking that your code operates correctly; prompt engineering involves changing the words you use in order to communicate more effectively with your AI assistant.

 	 Chapter 7 is all about breaking large problems down into smaller problems that are easier for GitHub Copilot to handle. The technique is called top-down design, and, in this chapter, you’ll use it to design a small but complete program that can offer spelling suggestions for misspelled words (like a spell-checker).

 	 Chapter 8 is a deep dive into bugs (errors in your code!), how to find them, and how to fix them. You’ll learn how to step line by line through your code to pinpoint exactly what’s going wrong and even how to ask GitHub Copilot to help you fix bugs.

 	 Chapter 9 puts GitHub Copilot to work to help you automate tedious tasks. You’ll see three examples—cleaning up emails that have been forwarded many times, adding cover pages to hundreds of PDF files, and removing duplicate images—and you’ll be able to apply the principles to your own specific tasks as well.

 	 Chapter 10 shows you how to use GitHub Copilot to write computer games. You’ll use the skills you developed throughout the book to write two games: a logic game similar to Wordle, and a two-player, press-your-luck board game.

 	 Chapter 11 contains an example of using top-down design to write a large program, much larger than anything to this point in the book. The program you’ll write is a sophisticated one: it can guess the author of books whose authors we don’t know!

 	 Chapter 12 delves into the fledgling field of prompt patterns, which are tools to help you get even more out of your AI assistant. It also summarizes the current limitations of AI coding assistants and looks at what may be on the horizon.

 Source code downloads

 For many books about programming, the reader types the code exactly as the author has written it in order to accomplish a task with code. Our book is different because, as described earlier, the code we get back from GitHub Copilot is nondeterministic; your code won’t match our code. For that reason, we aren’t providing all the code for download that you see in this book. We want you to focus on generating that code from GitHub Copilot, not typing it in yourself! That said, we do have some important files to share, and they are available from the publisher’s website at www.manning.com/books/learn-ai-assisted-python-programming-second-edition.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Comments or code we’ve written as prompts to be interpreted by GitHub Copilot or ChatGPT are in bold to highlight what we wrote rather than what was given to us by the large language model.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this wasn’t enough, and listings include line-continuation markers (↪). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 Software/hardware requirements

 You’ll need access to any Windows, Mac, or Linux computer on which you have permission to install software. As we discuss in further detail in chapter 2, you’ll need to install the Python software, the Visual Studio Code (VS Code) software, as well as various extensions. You’ll also need to sign up for a GitHub Copilot account, which, at the time of writing, has a free trial and is free for students and educators, but otherwise has a monthly charge.

 liveBook discussion forum

 Purchase of Learn AI-Assisted Python Programming, Second Edition includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/learn-ai-assisted-python-programming-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the authors

 [image: figure]

 Leo Porter is a professor of computer science at UC San Diego. He has more than a decade of teaching experience and is well-known for his award-winning research on effective pedagogies and assessments in computer science.

 [image: figure]

 Daniel Zingaro is an associate teaching professor of computer science and award-winning teacher at the University of Toronto. His main area of research is computer science education research, where he studies how students learn computer science material.

 about the cover illustration

 The figure on the cover of Learn AI-Assisted Python Programming, Second Edition is “Prussien de Silésie,” or “Prussian from Silesia,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand. In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Introducing AI-assisted programming with GitHub Copilot

 This chapter covers

 	How AI assistants change how new programmers learn

 	Why programming is never going to be the same

 	How AI assistants such as GitHub Copilot work

 	Possible perils of AI-assisted programming

 Computer programming has long been the domain of professionals with special training and advanced skills. After all, you want the applications running your bank, phone, car, and so on to work exactly right every time! Just as room-sized computers with stacks of paper cards and miles of magnetic tape have been replaced by modern devices, programming languages and tools have also become easier to use. And now, artificial intelligence (AI) tools such as ChatGPT put computer programming within the reach of almost everyone. We want to help open this door for you!

 Learn how to program, and you’ll be able to take on new tasks at work, create your own computer games, and put the computer to work for you at your job. In this book, we’ll show you how to write your own computer programs using ChatGPT and GitHub Copilot. Along the way, you’ll learn some skills in Python, one of the most popular programming languages.

1.1 Improving how we talk to computers

 Let’s start by asking a computer to count from 0 to 9. Decades ago, a book about programming would have asked you to learn how to read and understand the following code (based on https://mng.bz/EOdO):

 section .text
global _start
_start:
 mov ecx, 10
 mov eax, '0'
 l1:
 mov [num], eax
 mov eax, 4
 mov ebx, 1
 push ecx
 mov ecx, num
 mov edx, 1
 int 0x80
 mov eax, [num]
 inc eax
 pop ecx
 loop l1
 mov eax, 1
 int 0x80
section .bss
 num resb 1

 We’re glad that’s not how we program anymore. That monstrosity was written using code in assembly language, a low-level programming language. Low-level programming languages, as you can see, aren’t languages that humans can easily read and write. They’re designed for computers, not humans.

 No one wants to write programs like that, but, especially in the past, it was sometimes necessary. Programmers could use it to define exactly what they wanted the computer to do, down to individual instructions. This level of control was needed to squeeze every bit of performance out of underpowered computers. For example, the most speed-critical pieces of 1990s computer games, such as Doom and Quake, were written in assembly language like the previous code example. It wouldn’t have been possible to make those games otherwise.

1.1.1 Making it a little easier

 Okay, let’s move on. Here’s a more modern computer program that also prints numbers.

 for num in range(0, 9):
 print(num)

 This code is in the Python language, which is what many programmers use these days. Unlike assembly language, which is a low-level language, Python is considered a high-level language because it’s much closer to natural language. Even though you don’t know about Python code yet, you might be able to guess what this program is trying to do. The first line looks like it’s doing something with the range of numbers from 0 to 9. The second line is printing something. It’s not too hard to believe that this program, just like the assembly language monstrosity, is supposed to print the numbers 0 to 9. Unfortunately, something is wrong, and it prints the numbers 0 to 8 instead.

 While this code is closer to English, it isn’t English. It’s a programming language that, like assembly language, has specific rules. As in the previous code, misunderstanding the details of those rules can result in a broken program. If you’re curious, the misunderstood rule was that the range function stops one before the second number provided, so it doesn’t include the number 9. If you wanted 0 through 9, you’d need to say range(0,10).

 The holy grail of communicating with a computer is to do so in a natural language such as English. We’ve been talking to computers using various programming languages over the past 80 years not because we want to but because we have to. Computers were simply not powerful enough for the vagaries and idiosyncrasies of a language like English. Our programming languages improved—from symbol-soup assembly language to Python, for example—but they are still computer languages, not natural languages. This is changing.

1.1.2 Making it a lot easier

 Using an AI assistant, we can now ask for what we want in English and have the computer code written for us in response. To get a correct Python program that prints the numbers from 0 to 9, we can ask our AI assistant (Copilot) in normal English language like this:

 # Output the numbers from 0 to 9

 Copilot might respond to this prompt by generating something like this:

 for i in range(10):
 print(i)

 Unlike the example we showed you before, this piece of Python code actually works!

 AI coding assistants can be used to help people write code. In this book, we’ll learn how to use Copilot to write code for us. We’ll ask for what we want in English and get the code back in Python.

 More than that, we’ll be able to use Copilot as a seamless part of our workflow. Without tools like Copilot, programmers routinely have two windows open: the one to write code and the other to ask Google how to write code. This second window has Google search results, Python documentation, or forums of programmers talking about how to write code to solve that particular problem. They’re often pasting code from these results into their code, then tweaking it slightly for their context, trying alternatives, and so on. This has become a way of life for programmers, but you can imagine the inefficiency here. By some estimates, up to 35% of programmers’ time is spent searching for code [1], and much of the code that is found isn’t readily usable. Copilot greatly improves this experience by helping us write our code.

1.2 About the technology

 We’ll use two main technologies in this book: Python and GitHub Copilot. Python is the programming language that we’ll use, and GitHub Copilot is our AI assistant that will help us work with the Python code.

1.2.1 Python, your programming language

 As mentioned, Python is a programming language, which is a way to communicate with a computer. People use it to write all kinds of programs that do useful things such as data analysis, games, interactive websites, visualizations, file organization apps, automating routine tasks, and so on.

 There are other programming languages as well, such as Java, C++, Rust, and many others. Copilot works with those, too, but at the time of this writing, it works really well with Python. Python code is a lot easier to write compared to many other languages (especially assembly code). Even more importantly, Python is easy to read. After all, we’re not going to be the ones writing the Python code—our AI assistant is!

 Computers don’t know how to read and run Python code. The only thing computers can understand is something called machine code, which looks even more ridiculous than assembly code because it’s the binary representation of the assembly code (yep, just a bunch of 0s and 1s!). Behind the scenes, your computer takes any Python code that you provide and converts it into machine code before it runs, as shown in figure 1.1.

 [image: figure]

Figure 1.1 Your Python program goes through several steps before you see the output on your screen.

 So, no one is writing code from scratch in the machine code language of computers anymore. Programmers are all picking the language that’s most convenient for their particular task at the time and using software to help them write, run, and debug (i.e., fix) the code, called an Integrated Development Environment (IDE). In the book, we’ll be using Visual Studio Code (VS Code) as our IDE because it works exceptionally well with GitHub Copilot.

1.2.2 GitHub Copilot, your AI assistant

 What is an AI assistant? An AI assistant is an AI agent that helps you get work done. Maybe you have an Amazon Alexa device at home or an iPhone with Siri—these are AI assistants. They help you order groceries, be aware of the weather, or determine that, yes, the woman who played Bellatrix in the Harry Potter movies really was in Fight Club. An AI assistant is just a computer program that responds to typical human inputs such as speech and text with human-like answers.

 Copilot is an AI assistant with a specific job: it converts English into computer programs (along with a whole lot more, as we’ll soon see). There are other AI assistants like Copilot, including Amazon Q Developer, Tabnine, and Ghostwriter. We chose Copilot for this book based on a combination of the quality of code that we’ve been able to produce, stability (it has never crashed for us!), and our own personal preferences. We encourage you to also check out other tools when you feel comfortable doing so.

1.2.3 How Copilot works behind the scenes—in 30 seconds

 You can think of Copilot as a layer between you and the computer program you’re writing. Instead of writing the Python directly, you simply describe the program you want in words—this is called a prompt —and Copilot generates the program for you.

 The brain behind Copilot is a fancy computer program called a large language model (LLM). An LLM stores information about relationships between words, including which words make sense in certain contexts, and uses this to predict the best sequence of words to respond to a prompt.

 Imagine that we asked you what the next word should be in this sentence: “The person opened the ________.” There are many words that you could fill in here, like “door,” “box,” or “conversation,” but there are also many words that wouldn’t fit here, like “the,” “it,” or “open.” An LLM takes into account the current context of words to produce the next word, and it keeps doing this until it has completed the task. It does this in a way that is nondeterministic, which just means that its decisions are somewhat random, meaning if you ask it to fill in that word, sometimes it will give you the word “door,” and sometimes it will give you the word “box.” This means that if you ask Copilot to give you code, it may give you different answers each time you ask.

 In addition, notice that we didn’t say anything about Copilot having an understanding of what it’s doing. It just uses the current context to keep writing code. Keep this in mind throughout your journey: only we know whether the code that’s generated does what we intended it to do. Very often it does, but you should always exercise healthy skepticism regardless. Figure 1.2 gives you an idea of how Copilot goes from prompt to program.

 [image: figure]

Figure 1.2 Going from prompt to program with Copilot

 You might wonder why Copilot writes Python code for us and not machine code directly. Isn’t Python an expendable intermediate step now? Well, no, and the reason is that Copilot is going to make mistakes. And if it’s going to make mistakes that we need to fix, it’s a lot easier to do that with Python than with machine code.

 In fact, virtually no one checks if the machine code produced from Python is correct. This is partially because of the determinism of the Python language specification. One could imagine a future where Copilot conversations are so accurate that inspecting the Python is unnecessary, but we’re a long way from that.

1.3 How Copilot changes how we learn to program

 When learning how to program in the past, learners often spent most of their time working with the syntax and basic structure of programs. When we use the word syntax, we’re referring to the symbols and words that are valid in a given language. Programmers would need to write all of the syntax of a program from scratch (character by character, line by line). People learning to program used to spend weeks or months to get to a point where they could write even basic programs. Now, Copilot can immediately write those same basic programs and offers code that is almost always syntactically and structurally correct. As you’ll see in the rest of the book, we still need to verify that this code is correct because Copilot can make mistakes. However, we don’t need to write it from scratch anymore. We believe Copilot and similar tools signal the end of the old way that people learned to program.

 You, as someone interested in learning how to program, simply don’t need to struggle with syntax, understanding exactly how to call a given Python function, and the host of other Python concepts needed to write code like you’d have had to in the past. Sure, we’re going to learn about those concepts in this book, but not so that you can demonstrate your understanding by writing code from scratch that Copilot can produce easily. No, we’ll learn those concepts only because they help us solve meaningful problems and interact productively with Copilot. Instead, you get to learn how to write larger, more meaningful software faster because of how an AI assistant fundamentally changes the skills needed to learn programming.

1.4 What else can Copilot do for us?

 As we’ve seen, we can use Copilot to write Python code for us starting from an English description of what we want. So, we can say that Copilot takes a description in English syntax and gives us back code in Python syntax. That’s a big win because learning programming syntax has historically been a major stumbling block for new programmers. What kind of bracket—[, (, or {—am I supposed to use here? Do I need indentation here? What order are we supposed to write these things in: x and then y, or y and then x?

 Such questions abound, and—let’s be honest—it’s uninteresting stuff. Who cares about this when all we want to do is write a program to make something happen? Copilot can help free us from the tedium of syntax. We see this as an important step to help more people successfully write programs, and we look forward to the day when this artificial barrier is completely removed. For now, we still need Python syntax, but at least Copilot helps us with it.

 But that’s not all Copilot can do. Here are some associated—and no less important—tasks Copilot can help us with:

 	 Explaining code —When Copilot generates Python code for us, we’ll need to determine whether that code does what we want. Again, as we said previously, Copilot is going to make mistakes. Although we’re not interested in teaching you every nuance of how Python works (that’s the old model of programming), we’ll teach you how to read Python code to gain an overall understanding of what it does. We’ll also use the Copilot feature that explains code to you in English. When you finish with this book and our explanations, you’ll still have Copilot available to help you understand that next bit of gnarly code that it gives you.

 	 Making code easier to understand —There are different ways to write code to accomplish the same task. Some may be easier to understand than others. You can ask Copilot to reorganize your code to make it easier to work with. Code that’s easier to read is often easier to enhance or fix when needed.

 	 Fixing bugs —A bug is a mistake made when writing a program that can result in the program doing the wrong thing. Sometimes, your Python code almost works or works almost always but not in one specific circumstance. If you’ve listened to programmers talk, you may have heard the common story where a programmer would spend hours only to finally remove one = symbol that was making their program fail. That’s not a fun few hours! In these cases, you can try the Copilot feature that helps to automatically find and fix the bug in the program.

 	 Explaining errors —If your code isn’t working correctly, you’ll often get an error report back from the Python runtime environment. Those errors can be fairly cryptic at times, but Copilot can help you interpret the error and guide you on how to fix it.

 	 Finding Python libraries —Python is a mature language with many modules (libraries) that can aid particular tasks, such as data analysis, writing games, working with different image file formats, and so on. A quick conversation with Copilot can often help you find modules that will make your work easier and give you examples to get you started.

1.5 Risks and challenges when using Copilot

 Now that we’re all pumped up about getting Copilot to write code for us, we need to talk about the dangers inherent in using AI assistants (see references [2] and [3] for elaboration on some of these points):

 	 Copyright—Copilot learned how to program using human-written code. (You’ll hear people use the word “train” when talking about AI tools like Copilot. In this context, training is another word for learning.) More specifically, it was trained using millions of GitHub repositories containing open-source code. One worry is that Copilot will “steal” that code and give it to us. In our experience, Copilot doesn’t often suggest a large chunk of someone else’s code, but that possibility is there. Even if the code that Copilot gives us is a melding and transformation of various bits of other people’s code, there may still be licensing problems. For example, who owns the code produced by Copilot? There is currently no consensus on the answer. The Copilot team is adding features to help; for example, Copilot can tell you whether the code that it produced is similar to already-existing code and what the license is on that code [4]. Learning and experimenting on your own is great, and we encourage that—but take care if you intend to use this code for purposes beyond your home. We’re intentionally a bit vague here because it may take some time for laws to catch up to this new technology. It’s best to play it safe while these debates are had within society.

 	 Education —As instructors of introductory programming courses ourselves, we’ve seen firsthand how well Copilot does on the types of assignments we’ve given our students in the past. In one study [5], Copilot was asked to solve 166 common introductory programming tasks. How well did it do? On its first attempt, it solved almost 50% of these problems. Give Copilot a little more information, and that number goes up to 80%. Education needs to change in light of tools like Copilot, and instructors are currently discussing how these changes may look. At some schools, students are allowed to use Copilot to aid in their learning and on their assignments. At other schools, Copilot isn’t allowed in some contexts (i.e., exams) or for some students (computer science majors). At many schools, LLMs are being allowed to act as tutors for students. In some cases, the LLM tutors are just regular LLMs like Copilot or ChatGPT, but, in other cases, the LLM interface has been changed to restrict the kind of answers students receive. It’s still too early to know how LLMs will affect computing education, but trends like these have already started to emerge.

 	 Code quality—We need to be careful not to trust Copilot, especially with sensitive code or code that needs to be secure. Code written for medical devices, for example, or code that handles sensitive user data must always be thoroughly understood. It’s tempting to ask Copilot for code, marvel at the code that it produces, and accept that code without scrutiny. But that code might be plain wrong. In this book, we’ll work on code that won’t be deployed at large, so, while we’ll focus on getting the correct code, we won’t worry about the implications of using this code for broader purposes. We’ll also build the foundations you’ll need to independently determine whether code is correct.

 	 Code security—As with code quality, code security is absolutely not assured when we get code from Copilot. For example, if we’re working with user data, getting code from Copilot isn’t enough. We would need to perform security audits and have expertise to determine that the code is secure. Again, though, we won’t be using code from Copilot in real-world scenarios, so we won’t focus on security concerns.

 	 Not an expert—One of the markers of being an expert is awareness of what one knows and, equally important, what one doesn’t. Experts are also often able to state how confident they are in their response, and if they aren’t confident enough, they will learn further until they know that they know. Copilot and, more generally, LLMs, don’t do this. You ask them a question, and they answer, plain as that. They will confabulate if necessary: they will mix bits of truth with bits of garbage into a plausible-sounding but overall nonsensical response. For example, we’ve seen LLMs fabricate obituaries for people who are alive, which doesn’t make any sense, yet the “obituaries” do contain elements of truth about people’s lives. When asked why an abacus can perform math faster than a computer, we’ve seen LLMs come up with confident-sounding responses—including something about abacuses being mechanical and therefore necessarily the fastest. There is ongoing work in this area for LLMs to be able to say, “Sorry, no, I don’t know this,” but we’re not there yet. They don’t know what they don’t know, and that means they need supervision.

 	 Bias—LLMs will reproduce the same biases present in the data on which they were trained. If you ask Copilot to generate a list of names, it will generate primarily English names. If you ask for a graph, it may produce a graph that doesn’t consider perceptual differences among humans. And, if you ask for code, it may produce code in a style reminiscent of how particular groups write code. (After all, the demographic groups that are well represented in computing wrote most of the code in the world, and Copilot is trained on that code.) Computer science and software engineering have long suffered from a lack of diversity. We can’t afford to stifle diversity further, and we need to reverse the trend. We need to let more people in and allow them to express themselves in their own ways. How this will be handled with tools like Copilot is currently being worked out and is crucially important to the future of programming. However, we believe Copilot has the potential to improve diversity by lowering barriers to entry into the field.

1.6 The skills we need

 If Copilot can write our code, explain it, and fix bugs in it, are we just done? Do we just tell Copilot what to do and celebrate our pure awesomeness?

 No. First, Copilot can make mistakes. The code it gives us might be syntactically correct, but sometimes it doesn’t do what we want it to do. We need to be vigilant to catch when Copilot makes these mistakes. Second, although some of the skills that programmers rely on (e.g., writing correct syntax) will decrease in importance, other skills remain critical. For example, you can’t throw a huge task at Copilot like, “Make a video game. Oh, and make it fun.” Copilot will fail. Instead, we need to break down such a large problem into smaller tasks that Copilot can help us with. How do we break a problem down like that? Not easily, it turns out. Humans need to develop this key skill when engaging in conversations with tools like Copilot, and we teach this skill throughout the book.

 Other skills, believe it or not, may take on even more importance with Copilot. Testing code has always been a critical task in creating high-quality code. We know a lot about testing code written by humans because we know where to look for typical problems. We know that humans often make programming errors at the boundaries of values. For example, if we wrote a program to multiply two numbers, we’d likely get most values right but maybe not when one value is 0. What about code written by AI, where 20 lines of flawless code could hide 1 line so absurd that we likely wouldn’t expect it there? We don’t have experience with that. We need to test even more carefully than before.

 We also need to know how to fix mistakes when the code is wrong. This process is called debugging and is still essential, particularly when Copilot gives you code that is close to correct but not quite there yet.

 Finally, some required skills are entirely new. The main one here is called prompt engineering, which involves how to tell Copilot what to do. As mentioned earlier, when we’re asking Copilot to write some code, we’re using a prompt to make the request. Although we can use English to write that prompt and ask for what we want, it’s not enough. We need to be very precise if we want Copilot to have any chance of doing the right thing. And, even when we’re precise, Copilot may still do the wrong thing. In that case, we need to first identify that Copilot has indeed made a mistake. Then, we can try to tweak our description to hopefully nudge it in the right direction. In our experience, seemingly minor changes to the prompt can have outsized effects on what Copilot produces. In this book, we’ll teach you all of these skills.

1.7 Societal concerns about AI code assistants like Copilot

 There’s societal uncertainty right now about AI code assistants like Copilot. We thought we’d end the chapter with a few questions and our current answers. Perhaps you’ve been wondering about some of these questions yourself! Our answers may turn out to be hilariously incorrect, but they do capture our current thoughts as two professors and researchers who have dedicated their careers to teaching programming:

 Q: Are there going to be fewer tech and programming jobs now that we have Copilot?

 A: Probably not. What we do expect to change is the nature of these jobs. For example, we see Copilot as being able to help with many tasks typically associated with entry-level programming jobs. This doesn’t mean that entry-level programming jobs go away, only that they change as programmers are able to get more done given increasingly sophisticated tools.

 Q: Will Copilot stifle human creativity? Will it just keep swirling around and recycling the same code that humans have already written, limiting the introduction of new ideas?

 A: We suspect not. Copilot helps us work at a higher level, further removed from the underlying machine code, assembly code, or Python code. Computer scientists use the term
 abstraction to refer to the extent that we can disconnect ourselves from the low-level details of computers. Abstraction has been happening since the dawn of computer science, and we don’t seem to have suffered for it. On the contrary, it enables us to ignore problems that have already been solved and focus on solving broader and broader problems. Indeed, it’s been the advent of better programming languages that have facilitated better software—software that powers Google search, Amazon shopping carts, and macOS weren’t written (and likely couldn’t have been written) when we only had assembly!

 Q: I keep hearing about ChatGPT. What is it? Is it the same as Copilot?

 A: It’s not the same as Copilot, but it’s built on the same technology. Rather than focus on code, though, ChatGPT focuses on knowledge in general. As a result, it has insinuated itself into a wider variety of tasks than Copilot. For example, it can answer questions, write essays, and even do well on a Wharton MBA exam [6]. Education will need to change as a result: we can’t have people ChatGPTing their way to MBAs! The worthwhile ways in which we spend our time may change. Will humans keep writing books and, if so, in what ways? Will people want to read books knowing they were partially or fully written by AI? There will be effects across industries, including finance, health care, and publishing [7]. At the same time, there is unfettered hype right now, so it can be difficult to separate truth from fiction. This problem is compounded by the simple truth that no one knows what’s going to happen here in the long term. There’s an old adage coined by Roy Amara (known as Amara’s law) that says, “We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.” As such, we need to do our best to be tuned into the discussion so that we can adapt accordingly.

 In the next chapter, we’ll get you started using Copilot on your computer so you can get up and running writing software.

 Summary

 	 Copilot is an AI assistant, which is an AI agent that helps you get work done.

 	 Copilot changes how humans interact with computers, as well as the way we write programs.

 	 Copilot changes the focus of skills we need to hone (less focus on syntax, more focus on problem decomposition and testing).

 	 Copilot is nondeterministic; sometimes it produces correct code, and sometimes it doesn’t. We need to be vigilant.

 	 Problems around copyright of code, education and job training, and bias in Copilot results still need to be worked out.

2 Getting started with Copilot

 This chapter covers

 	Setting up Python, Visual Studio Code, and Copilot on your system

 	Introducing the Copilot design process

 	Understanding Copilot’s value for a data processing task

 We want you to be able to create software yourself right from the start. To do this, we’ll guide you through setting up Visual Studio Code (VS Code), Python, and Copilot on your machine and familiarize you with how to interact with these tools. After you’ve set up the tools, you’ll be able to follow along with our examples and start creating software yourself. There’s no substitute for practice, and we believe you can learn right alongside us for the remainder of the book.

 Once you’ve set up Copilot, we’ll walk through a fun example that showcases the power of Copilot in solving standard tasks. You’ll see how to interact with Copilot, and you’ll learn how you can write software without writing any actual code. Keep in mind that Copilot isn’t perfect, and you need to be able to read and understand a little Python to get what you want, but it gives you a big head start. Let’s get started creating your first computer program.

2.1 Setting up your computer to start learning

 Learning how to write software requires that you go beyond just reading about it and actually perform the task of writing software. If this were a book on how to play guitar, would you keep reading it without ever trying to play the guitar? We thought not. Reading this book without following along and trying it out yourself would be like watching a marathon runner finish the race and thinking you’re ready to go run one yourself. We’ll stop with the analogies, but seriously, you need to get your software installed and running before we go farther.

 What scares us the most right now is that we just hit the most common point where novices, even those eager to learn programming, tend to fail, and we really want to see you succeed. Now, you might be thinking, “Wait, really? We’re just getting started.” Yes, that’s exactly the point. In Leo’s popular Coursera course about learning Java programming [1], can you guess the point when most new learners leave? Is it the challenging assignment at the end of the course that involves plotting earthquake markers on the globe in real time? No. It’s actually the warmup assignment where learners must set up their programming environment. As such, we understand this could be a hurdle for you. We hope that with this not-so-subtle nudge, we can help you achieve all the goals you had in mind when you bought this book. It all starts with installing the software.

2.2 The software we’ll be using

 To set up and use Copilot easily, we’ll install the software editing tools used by novices and software engineers alike. The tools you’ll use are Python, VS Code, GitHub, and Copilot. Of course, if you already have all of these tools installed, jump to section 2.6.1.

2.2.1 Python

 Any programming language would have worked for this book, but we picked Python because it’s one of the most popular programming languages in the world and is the language we teach in our introductory courses at our universities. As we said in chapter 1, compared to other languages, Python is easier to read, easier to understand, and easier to write. For this book, Copilot will primarily generate the code, not you. However, you’ll want to read and understand the code generated by Copilot, and Python is great for that.

2.2.2 Visual Studio Code

 You can use any text editor to program. However, if you want a nice programming environment where you can write code, easily get suggestions from Copilot, and run your code, VS Code is our preferred tool. VS Code is used by novices learning software and is well liked by students [2]. It’s also used globally by professional software engineers, which means you can work and learn while using this environment after finishing the book. For VS Code to work for this book, you’ll need to install a few extensions that enable working with Python and using Copilot, but one of the great things about VS Code is that it’s easy to install those extensions.

2.2.3 GitHub account

 GitHub is an industry-standard tool for developing, maintaining, and storing software. We won’t use GitHub in this book, however. We’re signing up for GitHub simply because you’ll need an account to access Copilot. Signing up for a GitHub account is free, but, at the time of writing, they charge for Copilot. If you’re a student, they will waive that fee. If you aren’t a student, as of writing, you can get a 30-day free trial.

 You might ask why they charge for the service, and there’s a good answer. It’s expensive to build the GPT models (imagine thousands of computers running for a year to build the model), and GitHub incurs costs by providing predictions from the model (many machines are receiving your input, running it through the model, and generating your output). If you’re not ready to commit to using Copilot, you could make a calendar note for roughly 25 days from the day you sign up, and if you aren’t using Copilot at that time, just cancel. If, on the other hand, you’ve succeeded in learning how to write software with Copilot and are using it to improve your productivity at work or as a hobby, it may make sense to keep it.

 Over the course of this chapter, we’ll install all of these tools, but we’re going to do this in two parts. The first part, coming up next, will get you set up to write and run code on your own so you become familiar with that process. The second part will set you up to use Copilot to assist you in the process of writing code.

2.3 Getting your system set up: Part 1

 In this first part of our installation guide, we’ll install Python and VS Code. To streamline this section, we’re just outlining the main steps that you should follow. However, there are more detailed instructions available in the following locations:

 	 VS Code maintains a tutorial for getting started writing code in Python at https://mng.bz/znjQ.

 	 The website for this book (https://mng.bz/0M46) provides detailed instructions for setting up both PC and macOS systems. Because the websites for these tools might change after we write this book, we encourage you to use a combination of the GitHub link and the book website together.

 	 In the online book forum (https://mng.bz/NBK1), you can ask for help and see the answers to a list of frequently asked questions.

 The primary steps you’ll need to accomplish are as follows:

 	 Install Python:

 	 Go to www.python.org/downloads/.

 	 Download and install the latest version of Python (3.12.3 at the time of writing).

 	 Install VS Code:

 	 Go to https://code.visualstudio.com/download, and select the main download for your operating system (e.g., Windows or Mac).

 	 Download and install the latest version of VS Code.

 	 Install a VS Code Extension: (for details, see https://mng.bz/9o01).

 	 Python (by Microsoft)—Follow the instructions at https://mng.bz/j0gP to set up the Python extension correctly (specifically, selecting the correct interpreter).

 Although the instructions here are brief, we know in reality they can take some time. If you encounter any problems, consult the resources mentioned earlier for more detailed setup instructions.

2.4 Working with Python in Visual Studio Code

 Now that your system is set up, let’s get acquainted with the VS Code interface shown in figure 2.1. (You may need to click the Explorer icon in the middle/top left to get this same view.) The following regions are identified in figure 2.1:

 	 Activity Bar —On the far left is the Activity Bar where we can open file folders (also known as directories) or install extensions (as you did to install the Python extension in the previous section).

 	 Side Bar —The Side Bar shows what is presently open in the Activity Bar. In figure 2.1, the Activity Bar shows the Explorer selected, so the Side Bar is showing the files in the current folder.

 	 Editor Pane(s) —These are the primary areas we’ll use to create our software. The editor in the Editor Pane is similar to any other text editor in that you can write, edit, copy, and paste text using the clipboard. The editor is special, however, because it’s designed to work well with code. At this point, we’ll be writing code in this window, but later in this chapter, you’ll primarily work in this window by asking Copilot to generate code, and then you’ll test that code.

OEBPS/Images/Manning_M_small.png

OEBPS/Images/Zingaro.png

OEBPS/Images/1-2.png

OEBPS/Images/1-1.png

OEBPS/Images/cover.jpg

OEBPS/Images/Porter.png

OEBPS/Images/manning_m.jpg

