

Real-World Functional Programming with Examples in F# and C#

 Tomas Petricek & Jon Skeet

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 Sound View Court 3B
 Greenwich, CT 06830
 Email: orders@manning.com

 ©2010 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

	
 Development Editor: Tara Walsh
Copyeditor: Liz Welch
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Learning to think functionally

 Chapter 1. Thinking differently

 Chapter 2. Core concepts in functional programming

 Chapter 3. Meet tuples, lists, and functions in F# and C#

 Chapter 4. Exploring F# and .NET libraries by example

 2. Fundamental functional techniques

 Chapter 5. Using functional values locally

 Chapter 6. Processing values using higher-order functions

 Chapter 7. Designing data-centric programs

 Chapter 8. Designing behavior-centric programs

 3. Advanced F# programming techniques

 Chapter 9. Turning values into F# object types with members

 Chapter 10. Efficiency of data structures

 Chapter 11. Refactoring and testing functional programs

 Chapter 12. Sequence expressions and alternative workflows

 4. Applied functional programming

 Chapter 13. Asynchronous and data-driven programming

 Chapter 14. Writing parallel functional programs

 Chapter 15. Creating composable functional libraries

 Chapter 16. Developing reactive functional programs

 Appendix Looking ahead

 Appendix Resources

 Appendix Quick Reference – Functional Programming Concepts

 Appendix Quick Reference – F# Language Constructs

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Learning to think functionally

 Chapter 1. Thinking differently

 1.1. What is functional programming?

 1.2. The path to real-world functional programming

 1.2.1. Functional languages

 1.2.2. Functional programming on the .NET platform

 1.3. Being productive with functional programming

 1.3.1. The functional paradigm

 1.3.2. Declarative programming style

 1.3.3. Understanding what a program does

 1.3.4. Concurrency-friendly application design

 1.3.5. How functional style shapes your code

 1.4. Functional programming by example

 1.4.1. Expressing intentions using declarative style

 1.4.2. Understanding code using immutability

 1.4.3. Writing efficient parallel programs

 1.5. Introducing F#

 1.5.1. Hello world in F#

 1.5.2. From simplicity to the real world

 1.6. Summary

 Chapter 2. Core concepts in functional programming

 2.1. The foundation of functional programming

 2.2. Evaluation of functional programs

 2.2.1. Working with immutable values

 2.2.2. Using immutable data structures

 2.2.3. Changing program state using recursion

 2.2.4. Using expressions instead of statements

 2.2.5. Computation by calculation

 2.3. Writing declarative code

 2.3.1. Functions as values

 2.3.2. Higher-order functions

 2.4. Functional types and values

 2.4.1. Type inference in C# and F#

 2.4.2. Introducing the discriminated union type

 2.4.3. Pattern matching

 2.4.4. Compile-time program checking

 2.5. Summary

 Chapter 3. Meet tuples, lists, and functions in F# and C#

 3.1. Value and function declarations

 3.1.1. Value declarations and scope

 3.1.2. Function declarations

 3.1.3. Declaring mutable values

 3.2. Using immutable data structures

 3.2.1. Introducing tuple type

 3.2.2. Implementing a tuple type in C#

 3.2.3. Calculating with tuples

 3.2.4. Pattern matching with tuples

 3.3. Lists and recursion

 3.3.1. Recursive computations

 3.3.2. Introducing functional lists

 3.3.3. Functional lists in C#

 3.3.4. Functional list processing

 3.4. Using functions as values

 3.4.1. Processing lists of numbers

 3.4.2. Benefits of parameterized functions

 3.5. Summary

 Chapter 4. Exploring F# and .NET libraries by example

 4.1. Drawing pie charts in F#

 4.2. Writing and testing code in FSI

 4.2.1. Loading and parsing data

 4.2.2. Calculating with the data

 4.3. Creating a console application

 4.4. Creating a Windows Forms application

 4.4.1. Creating the user interface

 4.4.2. Drawing graphics

 4.4.3. Creating the Windows application

 4.5. Summary

 2. Fundamental functional techniques

 Chapter 5. Using functional values locally

 5.1. What are values?

 5.1.1. Primitive types, value types, and objects

 5.1.2. Recognizing values and data

 5.2. Multiple values

 5.2.1. Multiple values in F# and C#

 5.2.2. Tuple type and value constructors

 5.2.3. Using tuples compositionally

 5.3. Alternative values

 5.3.1. Discriminated unions in F#

 5.3.2. Working with alternatives

 5.3.3. Adding types vs. functions

 5.3.4. Using the option type in F#

 5.4. Generic values

 5.4.1. Implementing the option type in C#

 5.4.2. Generic option type in F#

 5.4.3. Type inference for values

 5.4.4. Writing generic functions

 5.5. Function values

 5.5.1. Lambda functions

 5.5.2. The function type

 5.5.3. Functions of multiple arguments

 5.6. Summary

 Chapter 6. Processing values using higher-order functions

 6.1. Generic higher-order functions

 6.1.1. Writing generic functions in F#

 6.1.2. Custom operators

 6.2. Working with tuples

 6.2.1. Working with tuples using functions

 6.2.2. Methods for working with tuples in C#

 6.3. Working with schedules

 6.3.1. Processing a list of schedules

 6.3.2. Processing schedules in C#

 6.4. Working with the option type

 6.4.1. Using the map function

 6.4.2. Using the bind function

 6.4.3. Evaluating the example step-by-step

 6.4.4. Implementing operations for the option type

 6.5. Working with functions

 6.5.1. Function composition

 6.5.2. Function composition in C#

 6.6. Type inference

 6.6.1. Type inference for function calls in F#

 6.6.2. Automatic generalization

 6.7. Working with lists

 6.7.1. Implementing list in F#

 6.7.2. Understanding type signatures of list functions

 6.7.3. Implementing list functions

 6.8. Common processing language

 6.8.1. Mapping, filtering, and folding

 6.8.2. The bind operation for lists

 6.9. Summary

 Chapter 7. Designing data-centric programs

 7.1. Functional data structures

 7.1.1. Using the F# record type

 7.1.2. Functional data structures in C#

 7.2. Flat document representation

 7.2.1. Drawing elements

 7.2.2. Displaying a drawing on a form

 7.3. Structured document representation

 7.3.1. Converting representations

 7.3.2. XML document representation

 7.4. Writing operations

 7.4.1. Updating using a map operation

 7.4.2. Calculating using an aggregate operation

 7.5. Object-oriented representations

 7.5.1. Representing data with structural patterns

 7.5.2. Adding functions using the visitor pattern

 7.6. Summary

 Chapter 8. Designing behavior-centric programs

 8.1. Using collections of behaviors

 8.1.1. Representing behaviors as objects

 8.1.2. Representing behaviors as functions in C#

 8.1.3. Using collections of functions in C#

 8.1.4. Using lists of functions in F#

 8.2. Idioms for working with functions

 8.2.1. The strategy design pattern

 8.2.2. The command design pattern

 8.2.3. Capturing state using closures in F#

 8.3. Working with composed behaviors

 8.3.1. Records of functions

 8.3.2. Building composed behaviors

 8.3.3. Further evolution of F# code

 8.4. Combining data and behaviors

 8.4.1. Decision trees

 8.4.2. Decision trees in F#

 8.4.3. Decision trees in C#

 8.5. Summary

 3. Advanced F# programming techniques

 Chapter 9. Turning values into F# object types with members

 9.1. Improving data-centric applications

 9.1.1. Adding members to F# types

 9.1.2. Appending members using type extensions

 9.2. Improving behavior-centric applications

 9.2.1. Using records of functions

 9.2.2. Using interface object types

 9.3. Working with .NET interfaces

 9.3.1. Using .NET collections

 9.3.2. Cleaning resources using IDisposable

 9.4. Concrete object types

 9.4.1. Functional and imperative classes

 9.4.2. Implementing interfaces and casting

 9.5. Using F# libraries from C#

 9.5.1. Working with records and members

 9.5.2. Working with values and delegates

 9.6. Summary

 Chapter 10. Efficiency of data structures

 10.1. Optimizing functions

 10.1.1. Avoiding stack overflows with tail recursion

 10.1.2. Caching results using memoization

 10.2. Working with large collections

 10.2.1. Avoiding stack overflows with tail recursion (again!)

 10.2.2. Processing lists efficiently

 10.2.3. Working with arrays

 10.3. Introducing continuations

 10.3.1. What makes tree processing tricky?

 10.3.2. Writing code using continuations

 10.4. Summary

 Chapter 11. Refactoring and testing functional programs

 11.1. Refactoring functional programs

 11.1.1. Reusing common code blocks

 11.1.2. Tracking dependencies and side effects

 11.2. Testing functional code

 11.2.1. From the interactive shell to unit tests

 11.2.2. Writing tests using structural equality

 11.2.3. Testing composed functionality

 11.3. Refactoring the evaluation order

 11.3.1. Different evaluation strategies

 11.3.2. Comparing evaluation strategies

 11.3.3. Simulating lazy evaluation using functions

 11.3.4. Lazy values in F#

 11.3.5. Implementing lazy values for C#

 11.4. Using lazy values in practice

 11.4.1. Introducing infinite lists

 11.4.2. Caching values in a photo browser

 11.5. Summary

 Chapter 12. Sequence expressions and alternative workflows

 12.1. Generating sequences

 12.1.1. Using higher-order functions

 12.1.2. Using iterators in C#

 12.1.3. Using F# sequence expressions

 12.2. Mastering sequence expressions

 12.2.1. Recursive sequence expressions

 12.2.2. Using infinite sequences

 12.3. Processing sequences

 12.3.1. Transforming sequences with iterators

 12.3.2. Filtering and projection

 12.3.3. Flattening projections

 12.4. Introducing alternative workflows

 12.4.1. Customizing query expressions

 12.4.2. Customizing the F# language

 12.5. First steps in custom computations

 12.5.1. Declaring the computation type

 12.5.2. Writing the computations

 12.5.3. Implementing a computation builder in F#

 12.5.4. Implementing query operators in C#

 12.6. Implementing computation expressions for options

 12.7. Augmenting computations with logging

 12.7.1. Creating the logging computation

 12.7.2. Creating the logging computation

 12.7.3. Refactoring using computation expressions

 12.8. Summary

 4. Applied functional programming

 Chapter 13. Asynchronous and data-driven programming

 13.1. Asynchronous workflows

 13.1.1. Why do asynchronous workflows matter?

 13.1.2. Downloading web pages asynchronously

 13.1.3. Understanding how workflows work

 13.1.4. Creating primitive workflows

 13.2. Connecting to the World Bank

 13.2.1. Accessing the World Bank data

 13.2.2. Recovering from failures

 13.3. Exploring and obtaining the data

 13.3.1. Implementing XML helper functions

 13.3.2. Extracting region codes

 13.3.3. Obtaining the indicators

 13.4. Gathering information from the data

 13.4.1. Reading values

 13.4.2. Formatting data using units of measure

 13.4.3. Gathering statistics about regions

 13.5. Visualizing data using Excel

 13.5.1. Writing data to Excel

 13.5.2. Displaying data in an Excel chart

 13.6. Summary

 Chapter 14. Writing parallel functional programs

 14.1. Understanding different parallelization techniques

 14.1.1. Parallelizing islands of imperative code

 14.1.2. Declarative data parallelism

 14.1.3. Task-based parallelism

 14.2. Running graphical effects in parallel

 14.2.1. Calculating with colors in F#

 14.2.2. Implementing and running color filters

 14.2.3. Designing the main application

 14.2.4. Creating and running effects

 14.2.5. Parallelizing the application

 14.2.6. Implementing a blur effect

 14.3. Creating a parallel simulation

 14.3.1. Representing the simulated world

 14.3.2. Designing simulation operations

 14.3.3. Implementing helper functions

 14.3.4. Implementing smart animals and predators

 14.3.5. Running the simulation in parallel

 14.4. Summary

 Chapter 15. Creating composable functional libraries

 15.1. Approaches for composable design

 15.1.1. Composing animations from symbols

 15.1.2. Giving meaning to symbols

 15.1.3. Composing values

 15.1.4. Composing functions and objects

 15.2. Creating animated values

 15.2.1. Introducing functional animations

 15.2.2. Introducing behaviors

 15.2.3. Creating simple behaviors in C#

 15.2.4. Creating simple behaviors in F#

 15.3. Writing computations with behaviors

 15.3.1. Reading values

 15.3.2. Applying a function to a behavior

 15.3.3. Turning functions into “behavior functions”

 15.3.4. Implementing lifting and map in C#

 15.4. Working with drawings

 15.4.1. Representing drawings

 15.4.2. Creating and composing drawings

 15.5. Creating animations

 15.5.1. Implementing the animation form in F#

 15.5.2. Creating animations using behaviors

 15.5.3. Adding animation primitives

 15.5.4. Creating a solar system animation

 15.6. Developing financial modeling language

 15.6.1. Modeling financial contracts

 15.6.2. Defining the primitives

 15.6.3. Using the modeling language

 15.7. Summary

 Chapter 16. Developing reactive functional programs

 16.1. Reactive programming using events

 16.1.1. Introducing event functions

 16.1.2. Using events and observables

 16.1.3. Creating a simple reactive application

 16.1.4. Declarative event processing using LINQ

 16.1.5. Declaring events in F#

 16.2. Creating reactive animations

 16.2.1. Using the switch function

 16.2.2. Implementing the switch function

 16.3. Programming UIs using workflows

 16.3.1. Waiting for events asynchronously

 16.3.2. Drawing rectangles

 16.4. Storing state in reactive applications

 16.4.1. Working with state safely

 16.4.2. Creating a mailbox processor

 16.4.3. Communicating using messages

 16.4.4. Encapsulating mailbox processors

 16.4.5. Waiting for multiple events

 16.5. Message passing concurrency

 16.5.1. Creating a state machine processor

 16.5.2. Accessing mailbox concurrently

 16.6. Summary

 Appendix Looking ahead

 A.1. What have you learned?

 A.2. Where do you want to go next?

 Appendix Resources

 Works cited

 In print

 Online

 Additional resources

 In print

 Online

 Appendix Quick Reference – Functional Programming Concepts

 Immutability

 Declarative Style

 Types

 Expressivity

 Appendix Quick Reference – F# Language Constructs

 Primitive Expressions

 Values and Functions

 Patterns

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 For the past couple of decades, object-oriented programming has dominated the industry, its ability to hide complexity and
 provide structure and intuition providing a major boost to software development.

 Not all kinds of complexity submit willingly to the mechanisms of encapsulated shared state and virtual methods. Some domains
 of computation, analysis, and transformation were not much helped by objects, and, looming bigger every day, the demand for
 concurrency is placing new pressure on the object-oriented paradigm.

 From an obscure existence in academic institutions and research labs, functional and declarative techniques have gradually
 crept into mainstream languages to counter those challenges. In C#, for instance, we added generics, anonymous functions,
 and monadic query expressions. But a full-fledged commercial functional programming language with the extensive libraries
 and tools that are crucial to developer productivity has been lacking. I believe F# is a magnificent milestone: one of those
 turning points that we will look back on and say that’s when we turned the corner.

 F# reaches back pragmatically over the language divide, comfortably embracing the full object model of the .NET framework.
 But now, we have to distinguish between functional programming and functional programming languages. As languages become multi-paradigmatic, what used to be a binary choice up front (object-oriented or functional) morphs
 into a broadened set of opportunities at every turn in your program. You can use functional programming techniques in C# to
 great benefit, though it is easier and more natural to do so in F#. You can settle on a preferred flavor in your choice of
 programming language, but your problem-solving options remain open.

 The great genius of this book is how it teases apart the functional mindset from the F# language itself. By showing both the
 C# and F# embodiments of functional programming patterns, the reader is well served. The developer who wants to embark on
 coding in F# gets a leg up from seeing the patterns used in a (presumably) familiar language. The programmer with good reasons
 to stay in C# can appreciate the principles in their pure form from the F# examples.

 Functional programming is a state of mind. It is a way of thinking differently about the problem. It is not just a bag of
 useful tricks (though it is that too), but a perspective from which the gnarliest knots prove to be approachable. In this
 book, as practical and hands-on as it is, Tomas and Jon gently and bravely insist on stressing the principles underneath.
 Read it at your own peril; you will never look at your own code the same way again!

 MADS TORGERSEN
C# LANGUAGE PROGRAM MANAGER
MICROSOFT CORPORATION

Preface

 This book is different from many other programming books available today. It doesn’t focus only on a specific programming
 language or library. Instead, it uses the presented languages and libraries to explain a way of thinking—a way of thinking
 that is becoming increasingly important and has influenced many recent technologies.

 You may already know some of the concepts described in this book, because functional ideas appear in many technologies. Examples
 from the .NET world include C# 3.0 and the LINQ project, Microsoft Parallel Extensions to .NET, and the declarative programming
 model used in Windows Presentation Foundation (WPF). In this book we’ll build on top of your existing .NET and C# experience
 to explain the functional programming paradigm. We’ll introduce F#, Microsoft’s new functional programming language, and use
 it to turn abstract ideas into something more concrete. Where possible we’ll also use C#, because functional ideas can help
 you when designing C# applications.

 If we’d been writing a book solely about F#, we could have simply organized it based on the individual language features and
 explained those features one by one. This book is about functional programming in general, so the structure is loosely based
 on ideas that form the functional paradigm. This is more difficult, because ideas don’t have clear boundaries and often overlap.

 We’ve tried to select the ideas that we believe are the most important for newcomers to functional programming and then shape
 the book around them. This is particularly important in part 2, where we systematically look at functional values, higher-order functions, and the architecture of functional programs.
 This means that some examples that can be used to quickly demonstrate functional programming, such as working with collections
 of data, don’t appear in only one place. Instead, they’re developed gradually through several chapters after we introduce
 each new idea. We decided to use this approach because it shows how functional programming elegantly arises from a small set
 of simple concepts—just as functional programs themselves do.

Acknowledgments

 The “butterfly effect,” a term coined by Edward Lorenz, is based in chaos theory: the idea is that a seemingly minor event
 such as a flap of butterfly’s wings somewhere in Asia can cause a major event such as a hurricane in South America. (The butterfly
 flapping its wings has been constant in the concept, but the location [Asia or Brazil] and the result [hurricane or tornado]
 have varied.) This alone would be enough to say that there were many more people (and butterflies), without whom this book
 would not exist than I can possibly list here. And even if I didn’t believe in chaos theory, the number of people I’d want
 to mention in this section would be enormous.

 I would never have become interested in F# and functional programming if I hadn’t met Don Syme. Don was my mentor during two
 internships at Microsoft Research and it was a great pleasure to work with him and participate in long discussions about F#
 (and life, the universe, and everything else). I’m also grateful to James Margetson from Microsoft Research who taught me
 many cool functional programming tricks. However, I’d never have met Don and James if I hadn’t gained status as an MVP by
 Microsoft and met Luke Hoban who introduced me to Don later. If I were to continue like this, I’d end up mentioning Michal
 Bláha, Jan Stoklasa, Božena Mannová, the authors of CodeProject.com, and many others.

 The book wouldn’t exist without Mike Stephens from Manning who first contacted me, and without Harry Pierson without whose
 initial involvement we’d never have started working on it. Even though we only worked together briefly, Harry’s participation
 was very important and encouraging.

 Now that I’ve mentioned people without whom the book would never have started, it’s also a time to mention those, without
 whom it would never have been finished.

 I’m very grateful to my coauthor Jon for helping me through the long process of turning the initial drafts and sketches into
 a real book. Jon is also the person to thank if you feel like this book was written exactly for you, because he carefully
 adjusted everything to be in the right form for our audience. Finally, Jon is a wonderful person to work with, so it was a
 pleasure to discuss the book with him both online and briefly in person.

 At this point, I’d like to mention everyone from Manning who contributed to this book. I already mentioned Mike Stephens who
 was always helpful in difficult moments. Nermina Miller and Tara McGoldrick Walsh guided me through the everyday jungle of
 the writing process and Mary Piergies, with Liz Welch and Elizabeth Martin, helped me to find the way out of this jungle to
 a clear light. I briefly worked with many other great folks at Manning including Gabriel Dobrescu, Steven Hong, Dottie Marsico,
 Christina Rudloff, Gordan Salinovic, Maureen Spencer, and Karen Tegtmeyer. I would also like to thank publisher Marjan Bace,
 who provided numerous useful insights.

 Folks from Manning also had a lucky hand picking people for the reviews at various points in the writing process. We received
 a large number of comments, suggestions, and hints, but also exactly the right amount of positive feedback that encouraged
 me to take as many of these suggestions as possible into account. Aside from our anonymous reviewers, I’d like to thank our
 two technical reviewers, Matthew Podwysocki and Michael Giagnocavo. I had the role of a technical reviewer in the past, so
 I can appreciate your hard work! And special thanks to Mads Torgersen, who wrote the foreword

 Another group who provided valuable input are readers of the early drafts. First of all, my colleagues Jan Stoklasa and René
 Stein, but also those who purchased the book through the Manning Early Access Program and shared their feedback in the forums
 (Dave Novick, Peer Reynders, Vladimir Kelman, and Michiel Borkent to name a few). Other reviewers who had a hand in making
 this book what it is are Marius Bancila, Freedom Dumlao, Eric Swanson, Walter Myers, Keith J. Farmer, Adam Tacy, Marc Gravell,
 Jim Wooley, Alessandro Gallo, Lester Lobo, Massimo Perga, Andrew Siemer, Austin Ziegler, Dave McMahon, Jason Jung, Joshua
 Gan, Keith Hill, Mark Needham, Mark Ryall, Mark Seemann, Paul King, and Stuart Caborn.

 I’d, of course, like to thank my friends and my family. To those who don’t know them, their question, “When is your book finally
 going to be finished?” may not sound particularly supportive, but I know them well and I honestly appreciated their encouragement.
 Last, but not least, I’m grateful to my dearest Evelina, who not only provided invaluable moral support, but also was so kind
 as to read and review large portions of the manuscript.

 TOMAS PETRICEK

 I would primarily like to thank Tomas and everyone at Manning for giving me the opportunity to be part of this book. Being
 a small part of a bigger goal is always interesting, and it’s been great fun learning about functional programming “from”
 a book and “into” a book at the same time. I can only hope that the minor contributions I’ve made will be useful—I’ve primarily
 acted as the voice of a passionate but ignorant reader (and C# enthusiast of course), so in some ways the book you’re reading
 now is tailored toward teaching me functional programming. That in itself is a gift to be grateful for. Tomas has thanked
 all the editors and other staff at Manning, and I’d like to echo those thanks.

 My children are still too young to be programming, and my wife is too...well, normal, basically—but they’ve always been there
 for me when higher-order functions have burst my brain. I’ve been struggling to stay sane and work on more than one book at
 a time, whereas my wife (who writes children’s fiction) seems perpetually up to her ears in proposals, chapter breakdowns,
 first drafts, copy edits, proofs, and delivered manuscripts, all for different titles and even publishers. Beyond that, she’s
 married to me—how she stays sane is anyone’s guess. However, I’m very glad that she does, and I’d like to thank her for being
 who she is. Tom, Robin, and William show great promise in their love of technology, but it’s their smiles and cuddles when
 I get home from work for which I’m most grateful.

 Finally, I’d like to thank all my English teachers, especially Simon Howells. The more I learn about programming languages,
 the more I believe that the language a software engineer should pay most attention to is the one he uses to communicate with
 people, not computers. Simon Howells is as passionate about language and literature as I am about computing, and that passion
 rubs off on his students. It is highly unlikely that he’ll ever read a word I’ve written, but his teaching will be with me
 for the rest of my life.

 JON SKEET

About this Book

 If you are an existing .NET developer who knows object-oriented technologies and are wondering what this new “functional programming”
 movement is about and how you can benefit from it, this book is definitely for you.

 It’s particularly tailored for .NET developers with working knowledge of object-oriented programming and C# 2.0. Of course,
 you don’t need to know either of these for functional programming in general, or even F# in particular. In fact, it’s more
 difficult to learn functional programming if you’re already used to thinking in an object-oriented manner, because many of
 the functional ideas will appear unfamiliar to you. We’ve written the book with this concern in mind, so we’ll often refer
 to your intuition and use comparisons between OOP and functional programming to explain particular topics.

 If you’re an existing object-oriented programmer using other languages and tools (for example, Java, Python, or Ruby) with
 the ability to understand languages quickly, you can also benefit from this book. We’re using examples in C#, but many of
 them would look similar in other object-oriented languages. The C# 3.0 features that aren’t available in other languages are
 briefly explained, so you don’t have to worry about getting lost.

 This book doesn’t focus on academic aspects of functional programming, but if you’re a computer science student taking a course
 on the topic, you can read this book to learn about the real-world uses of functional concepts.

What will this book give you?

 If you’re still wondering whether this book is right for you, here’s what you’ll learn by reading it:

	Functional programming concepts. As you read through the book, you’ll learn a new way to think about problems. We’ll see how
 complex object-oriented design patterns become one simple concept in functional programming. Functional thinking can be used
 when programming in any language, so this will be useful regardless of the specific technology you work with.

 	Basic functional constructs in practice. Some of the constructs are now available in C# 3.0, so you’ll see many of the examples
 in familiar C# code next to a clean functional F# implementation. We’ll also explain recent features in C# 3.0 and how they
 relate to functional ideas. Understanding the concepts deeply will help you to get the most benefit from the new features.

 	Writing real-world F# code. Even though the book isn’t only about F#, it will teach you everything you need to know to start.
 We’ll explore areas where F# really shines, including asynchronous programming and creating composable libraries.

We’re not claiming this is the perfect book for all purposes: computing isn’t a one-size-fits-all field. It’s worth knowing
 what this book isn’t to avoid disappointment.

What won’t this book give you?

 This hasn’t been written as a reference book. If you haven’t been exposed to functional programming, the best way to read
 the book is to start from the beginning and follow the order of the chapters. That’s the way we’ve assumed it will be read,
 so later chapters often refer to concepts explained earlier. If you open the book somewhere in the middle, you may find it
 hard to understand.

 This book also isn’t a quick guide to F# programming. The only way to become a good F# programmer is to understand functional
 programming ideas. You could learn all the F# keywords and rewrite your C# code in F#, but it wouldn’t do you much good. If
 you want to write idiomatic F# code, you’ll need to learn a different way of thinking that is used in functional programming.
 That’s what you’ll get by reading this book. Once you’ve adapted to thinking in a functional style, there are other books
 which can help you learn F# in more depth.

 Our primary goal is to write a book that can be used by professional programmers to write solutions to real-world business
 problems. However, that doesn’t mean we can offer you a ready-to-use solution for the specific problem you need to solve right
 now. Instead, we’ve focused on the relevant concepts and techniques. We’ve demonstrated those principles with many examples,
 but it isn’t possible to cover all the areas where F# and functional programming can be applied.

Roadmap

 This book uses an iterative structure. In part 1 (chapters 1-4) we’ll explain a few aspects of the most important topics, so that you can see the motivation and understand what makes functional
 programming different. Part 2 (chapters 5-8) systematically discusses all the foundations of functional programming. In part 3 (chapters 9-12) we build on these foundations and talk about best practices for functional programming, optimization, and some advanced
 techniques that most of the functional programmers occasionally need. Part 4 (chapters 13-16) presents more complex examples showing how to use functional programming to develop larger real-world projects.

 Chapter 1 discusses the reasons why functional concepts are becoming increasingly important. It gives examples of existing technologies
 that you may already know and that benefit from some aspects of functional programming. It also shows the first sample application
 in F#.

 Chapter 2 introduces the concepts behind functional programming. Without showing any details and mostly using C#, it’ll help you understand
 how these concepts relate to each other and what they mean for the structure of program.

 Chapter 3 finally shows some real functional code. It demonstrates some data types used in F# such as a tuple and a list. We’ll see
 how to work with the types in F#, but we’ll also implement them in C# to explain how they work. This chapter introduces the
 idea of using functions as values, which is essential for functional programming.

 Chapter 4 shows our first real-world application implemented in F#. We’ll use various .NET and F# libraries to implement a program
 for drawing pie charts. You’ll also see how to efficiently use the tools F# provides during the development process.

 Chapter 5 talks about values. Functional programs are written as calculations that take values as arguments and return values as results,
 so it is easy to see why we have to start the systematic review of functional features by looking at numerous kinds of values.

 Chapter 6 describes the most common way of working with values, which is to use higher-order functions. Working with values directly
 often requires a lot of repetitive code, so this chapter shows how to design and implement reusable operations.

 Chapter 7 turns the attention to architectural aspects. The structure of a functional application is determined by the data that it
 works with. We’ll use an application that manipulates and draws simple documents to demonstrate this important principle.

 Chapter 8 focuses on the architecture of applications that need to dynamically change their behavior at runtime. This can be done using
 functions, so we’ll talk about them in detail and we’ll also explain related topics such as closures.

 Chapter 9 shows how to mix object-oriented and functional styles in F#. It demonstrates how you can use functional features like immutability
 with object-oriented concepts such as encapsulation when writing functional .NET libraries.

 Chapter 10 focuses on correctness and efficiency. We’ll see how to write functions that can process data sets of arbitrary size and
 how to write these functions efficiently. You’ll also learn how to optimize code using imperative constructs like arrays.

 Chapter 11 talks about refactoring, testing and laziness. We’ll explain how functional programming makes it easier to understand and
 improve existing code. We’ll also look at unit testing, seeing how composability and strictness remove the need for some types
 of test.

 Chapter 12 starts by showing how we can work with collections of data. We’ll introduce F# sequence expressions, which are designed for
 this purpose. You’ll also see that this isn’t a built-in feature unlike its closest counterpart in C#—it’s an example of a
 more general ability to change what code means.

 Chapter 13 presents a common scenario when working with data in F#. It starts by downloading data using a public web service, then parses
 it into a structured format. Finally we see how to visualize interesting aspects using Excel.

 Chapter 14 shows how to use functional concepts to build applications that are easy to parallelize. It demonstrates this using an image
 processing application and a simulation featuring animals and predators that hunt them.

 Chapter 15 describes how to build declarative functional libraries. The chapter shows that well designed libraries can be elegantly
 composed. As an example, we’ll see how to create a library for creating animations and a library for representing financial
 contracts.

 Chapter 16 shows how to build GUI applications and in general, programs driven by external events. Implementing control flow like this
 is quite difficult in other languages, so we’ll look at tricks that make it much easier in F#.

Typographical conventions

 The book contains numerous code examples that are typeset using fixed-width font. Longer samples are presented in listings with a heading. Since the book mixes C# and F#, the heading in side-by-side listings
 also indicates the language used. When showing code in F#, we distinguish between two forms of listing. Code marked as “F#”
 is plain source code that can be compiled as a whole. Listings marked as “F# Interactive” present snippets in F# entered to
 an interactive shell. The output produced by the shell is typeset using italics. Bold fixed-width font is used to highlight all C# and F# keywords in all the listings.

Naming conventions

 In this book, we’re mixing not only two languages, but also a functional programming tradition with the object-oriented tradition.
 Since we want to use the natural style in both languages, we have to follow different naming conventions in F# and C#.

 In C# we follow the usual .NET style. In F#, we use this notation without exceptions when developing classes or when writing
 components that can be accessed from other .NET languages. When we show F# code that is only a private implementation, we
 follow the functional naming style. Most notably, we use camelCase for both variable and function names. This is the usual
 style in F#, because a function declaration is essentially the same thing as a variable declaration.

 Occasionally, we use shorter names and abbreviations. There are two reasons for this. First, this style has been often used
 by functional programmers. With better IDEs there are fewer reasons to use this style, so we’ve tried to minimize its use.
 In some cases the shorter name is a common term in functional programming, so we’ve kept it. The second reason is that sometimes
 we present two samples side-by-side, which means that we have to use a more compact coding style. Otherwise, the naming mostly
 follows the .NET style with a few exceptions that are discussed in the text.

StyleCop and FxCop

 If you’re familiar with tools for code analysis such as StyleCop and FxCop, you may be wondering whether the code in this
 book follows the rules required by these tools. We follow most—but not all—of the usual .NET conventions. If you run the code
 through these tools, you’ll get numerous warnings, again for two reasons.

	The tools for code analysis were developed for object-oriented languages using the naming and style of the object-oriented
 tradition. As you’ll learn in this book, the functional world is different in many ways and we simply cannot follow all the
 object-oriented principles. The F# language is successful because it is very different from C# and Visual Basic. This isn’t
 just visible in the language keywords, but in the overall style of programming that it uses and in some ways also in naming
 conventions that make the code more succinct.

 	The limited space we have in the book. We use source code samples to demonstrate important ideas, so we didn’t want to include
 noise that isn’t important for the discussion, but would be required to make the code comply with conventions.

Source code downloads

 The source code for the examples in the book is available online from the publisher’s website at http://www.manning.com/Real-WorldFunctionalProgramming and at a code repository created by the authors http://code.msdn.microsoft.com/realworldfp.

Author Online

 The purchase of Real-World Functional Programming includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to http://www.manning.com/Real-WorldFunctionalProgramming. This page provides information about how to get on the forum once you’re registered, what kind of help is available, and
 the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions,
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

Other online resources

 In addition to Manning’s website (http://www.manning.com/Real-WorldFunctionalProgramming), we have created a companion website for the book at http://functional-programming.net. It contains additional information that you may find useful, source code for the individual chapters, and material that
 didn’t fit in the book. The page also links to recent articles related to functional programming, so you can look at it to
 learn more about this topic.

 If you’re interested in F#, you may also want to check out the official Microsoft’s Developer Center available at http://msdn.microsoft.com/fsharp. It contains the most recent information about the language as well as links to articles, videos, and other F# resources.
 If you want to ask a question about F# and be sure that you’ll get a competent answer, you can visit the F# community forums
 available at http://cs.hubfs.net.

About the Cover Illustration

 The figure on the cover of Real-World Functional Programming is captioned “An employee,” and it shows an office clerk or civil servant elegantly dressed in suit and top hat and carrying
 an umbrella. The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-volume compendium of regional
 dress customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
 reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other,
 people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived
 and what their trade, occupation, or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Learning to think functionally

 You may have picked up this book for any number of reasons. Perhaps you’ve heard of functional programming when reading about
 LINQ and C# 3.0 or another technology that has been largely influenced by it, and you’re wondering if it has any other interesting
 ideas. You may have heard that functional programming makes it simple to write parallel or asynchronous programs. Maybe you’ve
 heard about other interesting applications of the functional style—just how do you go about writing programs with no mutable state? You may have heard about a new language called F# that’s going to be
 a part of Visual Studio 2010, and you want to learn what it has to offer.

 In any case, the first thing you’ll learn about functional programming is that it’s built on fundamentally different principles
 than the ones you’re probably used to. But that doesn’t mean you’ll have to throw away any of your existing knowledge, because
 functional programming on .NET plays nicely with the object-oriented style and existing libraries. The foundations are different,
 but we can build on top of them and return to familiar areas, looking at them from a different perspective.

 In part 1 we’ll focus on these fundamental principles. In chapter 1, we’ll examine the practical effects of some of these principles, but we won’t go into much detail. We’ll also write our
 first F# program so that you can start experimenting with F# on your own while you’re reading. In chapter 2, we’ll review the ideas behind functional programming more systematically and discuss how they change the way we write programs.
 We’ll use C# for most of the example code in that chapter, because many functional ideas can be used in C# as well.

 Chapter 3 gets into F# in more detail, looking at values, function declarations, and several built-in data types. We’ll also implement
 corresponding types and functions in C#. This is the easiest way of explaining how F# works to a C# developer, and we’ll be
 able to reuse some of the types in real-world C# examples later in the book. In chapter 4 we’ll use everything we’ve learned so far to develop a charting application in F#.

Chapter 1. Thinking differently

 This chapter covers

	Understanding functional programming

 	Increasing productivity with functional ideas

 	Writing efficient and readable code

 	Implementing your first F# application

Functional languages are expressive, accomplishing great feats using short, succinct, and readable code. All this is possible
 because functional languages provide richer ways for expressing abstractions. We can hide how the code executes and specify only the desired results. The code that specifies how to achieve the results is written only once. Thanks to the rich abstractions, we can hide all
 the complexity in libraries.

 This different approach to programming has far-reaching implications for real-world applications. This way of expressing logic
 makes programs readable and easy to reason about, thus making it possible to understand and change previously unknown code.
 Functional programs are easy to test and refactor. Yet despite these benefits, functional languages have largely been ignored
 by mainstream developers—until now. Today we’re facing new challenges. We need to write programs that process large data sets
 and scale to a large number of processors We need to deal with ever larger systems, so we have to get a better handle on their complexity. These trends open the door to functional
 languages. But they are far from being the only reason for using functional programming.

 As a result, many mainstream languages now include some functional features. In the .NET world, generics in C# 2.0 were heavily
 influenced by functional languages. One of the most fundamental features of functional languages is the ability to create
 function values on the fly, without declaring them in advance. This is exactly what C# 2.0 enables us to do using anonymous
 methods, and C# 3.0 makes it even easier with lambda expressions. The whole LINQ project is rooted in functional programming.

 While the mainstream languages are playing catch-up, truly functional languages have been receiving more attention too. The
 most significant example of this is F#, which will be an official, fully supported Visual Studio language as of Visual Studio
 2010. This evolution of functional languages on .NET is largely possible thanks to the common language runtime (CLR), which
 allows developers to

	Mix multiple languages when developing a single .NET application

 	Access rich .NET libraries from new languages like F#

Sharing of libraries among all .NET languages makes it much easier to learn these new languages, because all the platform
 knowledge that you’ve accumulated during your career can still be used in the new context of a functional language.

 In this book, we’ll explore the most important functional programming concepts and demonstrate them using real-world examples
 from .NET. We’ll start with a description of the ideas, then turn to the aspects that make it possible to develop large-scale
 real-world .NET applications in a functional way. We’ll use both F# and C# 3.0 in this book, because many of these ideas are
 directly applicable to C# programming. You certainly don’t need to write in a functional language to use functional concepts
 and patterns. But seeing the example in F# code will give you a deeper understanding of how it works, and F# often makes it
 easier to express and implement the solution.

 But we’ve jumped the gun. This is a book about functional programming, after all. Wouldn’t it make sense to start off by describing what the term means?

1.1. What is functional programming?

 Finding a precise definition of functional programming is difficult. Various functional languages exist, and there’s no clear
 set of features that every functional language must have. Nonetheless, functional languages share common properties and support
 somewhat different styles of expressing solutions to programming problems. It’s easiest to describe functional programming
 by comparing it with the most common alternative option: imperative programming.

	

 Functional Languages
 Functional programming is a style of programming that emphasizes the evaluation of expressions, rather than execution of commands.
 The expressions in these languages are formed by using functions to combine basic values. [Hutton ed. 2002]

	

This definition comes from a FAQ of an academic mailing list about functional languages, so it may sound a bit abstract. Believe
 us, the meaning will soon become clear. The “evaluation of expressions” in the first sentence represents the functional approach,
 compared with the “execution of commands” style of imperative code. Commands in imperative languages are called statements, so we’ll use this terminology instead. Let’s take a look at these two options in detail:

	
Execution of statements— The program is expressed as a sequence of commands, which are also called statements. Commands specify how to achieve the
 end result by creating objects and manipulating them. When using this approach, we typically work with objects that can be
 changed, and the code describes what modifications we need to perform in order to achieve the desired result. For example,
 we start by making a cup of black coffee. The object can be modified, so we can change it by adding two sugars to get the
 desired result.

 	
Evaluation of expressions— In the functional style, the program code is an expression that specifies properties of the object we want to get as the result.
 We don’t specify the steps necessary to construct the object and we can’t accidentally use the object before it’s created.
 For example, we say that we want to get a coffee with two packets of sugars. We can’t drink it before the sugar is added,
 because when we get the cup, it already contains the sugar.[1]
 1 The analogy with coffee making was also used by Luca Bolognese in his great talk about F# at TechEd in 2009 [Bolognese, 2009]. This coincidence suggests that by learning functional programming you’ll learn to think differently not only about programming
 problems but also about afternoon breaks.

This may still sound like a subtle difference, yet it leads to huge changes in the way you design code. The single axiom is
 that we write code as expressions instead of a sequence of statements, but this approach has many logical consequences. We
 encapsulate and compose code differently, we use various techniques for writing reusable code, we work with data structures
 that are more suitable for representing the result of a complex computation...the list goes on.

 Providing a definition of functional programming is one thing, but we also need to understand how the concepts can be used
 together. These two topics form the focus of this book. After you finish reading it, you’ll not only have an understanding
 of our earlier definition, but you’ll also get an intuitive feeling for functional programming. This is much more important,
 and unfortunately, it can’t be explained in a few sentences.

 So far this may all sound a bit abstract, but this book’s title includes the words “Real World” for good reason. Functional
 programming can offer notable benefits. You may have encountered (just like the authors of this book) these situations where
 a functional style may be the answer:

	Do you find it hard to predict the results of changing your code, due to hidden dependencies and subtleties?

 	Do you find yourself writing the same patterns over and over again, leaving little time for the genuinely different and interesting
 parts of the problem?

 	
Do you find it hard to reason about your code, worrying about whether each statement will execute in the right order and in
 the right conditions?

 	Do you find it hard to express abstractions that hide how the code executes and specify only what you’re trying to achieve?

 	Do you struggle with asynchronous control flow, finding that it leads to code that bears more than a passing resemblance to
 spaghetti?

 	Do you find it hard to split tasks into logically independent parts that can be run concurrently on multiple processor cores?

 	Does your code behave differently in the real world than it does in unit tests?

Before we look how functional programming can make you more productive, let’s briefly talk about its history, which is surprisingly
 rich.

1.2. The path to real-world functional programming

 Functional programming is a paradigm originating from ideas older than the first computers. Its history goes as far back as
 the 1930s, when Alonzo Church and Stephen C. Kleene introduced a theory called lambda calculus as part of their investigation
 of the foundations of mathematics. Even though it didn’t fulfill their original expectations, the theory is still used in
 some branches of logic and has evolved into a useful theory of computation. To explore the basic principles of functional
 programming, you’ll find a brief introduction to lambda calculus in the next chapter. Lambda calculus escaped its original
 domain when computers were invented and served as an inspiration for the first functional programming languages.

 1.2.1. Functional languages

 The first functional programming language celebrated its 50th birthday in 2008. LISP, created by John McCarthy in 1958, is
 based directly on the lambda calculus theory. LISP, an extremely flexible language, pioneered many programming ideas that
 are still used today, including data structures, garbage collection, and dynamic typing.

 In the 1970s, Robin Milner developed a language called ML. This was the first of a family of languages that now includes F#.
 Inspired by typed lambda calculus, it added the notion of types and even allowed us to write “generic” functions in the same
 way we do now with .NET generics. ML was also equipped with a powerful type inference mechanism, which is now essential for
 writing terse programs in F#. OCaml, a pragmatic extension to the ML language, appeared in 1996. It was one of the first languages
 that allowed the combination of object-oriented and functional approaches. OCaml was a great inspiration for F#, which has
 to mix these paradigms in order to be a first-class .NET language and a truly functional one.

 Other important functional languages include Haskell (a language with surprising mathematical purity and elegance) and Erlang
 (which has become famous for message passing concurrency that we’ll discuss in chapter 16). We’ll learn more about Haskell and LISP when we focus on topics where those languages have benefits over F#—but first,
 let’s finish our story by looking at the history of F#.

 1.2.2. Functional programming on the .NET platform

 The first version of .NET was released in 2002, and the history of the F# language dates to the same year. F# started off
 as a Microsoft Research project by Don Syme and his colleagues, with the goal of bringing functional programming to .NET.
 F# and typed functional programming in general gave added weight to the need for generics in .NET, and the designers of F#
 were deeply involved in the design and implementation of generics in .NET 2.0 and C# 2.0.

 With generics implemented in the core framework, F# began evolving more quickly, and the programming style used in F# also
 started changing. It began as a functional language with support for objects, but as the language matured, it seemed more
 natural to take the best from both styles. As a result, F# is now more precisely described as a multiparadigm language, which
 combines both functional and object-oriented approaches, together with a great set of tools that allow it to be used interactively
 for scripting.

	

 Microsoft F#
 F# is a functional programming language for the .NET Framework. It combines the succinct, expressive, and compositional style
 of functional programming with the runtime, libraries, interoperability, and object model of .NET. [F# home page]

	

F# has been a first-class .NET citizen since its early days. Not only can it access any of the standard .NET components but—equally
 importantly—any other .NET language can access code developed in F#. This makes it possible to use F# to develop standalone
 .NET applications as well as parts of larger projects. F# has always come with support in Visual Studio, and in 2007 a process
 was started to turn F# from a research project to a full production-quality language. In 2008 Microsoft announced that F#
 will become one of the languages shipped with Visual Studio 2010. This alone is a good reason for taking interest in F# and
 the whole functional paradigm, but let’s look at more pragmatic reasons now.

1.3. Being productive with functional programming

 Many people find functional programming elegant or even beautiful, but that’s hardly a good reason to use it in a commercial
 environment. Elegance doesn’t pay the bills, sad to say. The key reason for coding in a functional style is that it makes
 you and your team more productive.

 In this section, we’ll look at the key benefits that functional programming gives you and explain how it solves some of the
 most important problems of modern software development. Before exploring the specific benefits, we’ll consider a higher perspective.
 Functional programming isn’t a strictly delimited technology, because the functional ideas can appear in different forms.

 1.3.1. The functional paradigm

 Functional programming is a programming paradigm This means that it defines the concepts that we can use when thinking about
 problems. But it doesn’t precisely specify how these concepts should be represented in the programming language. As a result,
 there are many functional languages, and each emphasizes different features and aspects of the functional style.

 We can use an analogy with a paradigm you’re already familiar with: objectoriented programming (OOP). In the object-oriented
 style, we think about problems in terms of objects. Each object-oriented language has some notion of what an object is, but
 the details vary between languages. For instance, C++ has multiple inheritance and JavaScript has prototypes. Moreover, you
 can use an object-oriented style in a language that isn’t object-oriented, such as C. It’s less comfortable, but you’ll still
 enjoy some of the benefits.

 Programming paradigms aren’t exclusive. The C# language is primarily object-oriented, but in the 3.0 version it supports several
 functional features, so we can use techniques from the functional style directly. On the other side, F# is primarily a functional
 language, but it fully supports the .NET object model. The great thing about combining paradigms is that we can choose the
 approach that best suits the problem.

 Learning the functional paradigm is worthwhile even if you’re not planning to use a functional language. By learning a functional
 style, you’ll gain concepts that make it easier to think about and solve your daily programming problems. Interestingly, many
 of the standard object-oriented patterns describe how to encode some clear functional concept in the OOP style.

 Now let’s focus on the benefits of functional programming. We’ll start by looking at the declarative programming style, which
 gives us a richer vocabulary for describing our intentions.

 1.3.2. Declarative programming style

 In the declarative programming style, we express the logic of programs without specifying the execution details. This description
 may sound familiar to you because it’s quite similar to the definition of functional programming we’ve seen in section 1.1. But declarative programming is a more general idea that can be realized using different technologies. Functional programming
 is just one way to achieve that. Let’s demonstrate how functional languages make it possible to write declarative code.

 When writing a program, we have to explain our goals to the computer using the vocabulary that it understands. In imperative
 languages, this consists of commands. We can add new commands, such as “show customer details,” but the whole program is a
 step-by-step description saying how the computer should accomplish the overall task. An example of a program is “Take the
 next customer from a list. If the customer lives in the UK, show their details. If there are more customers in the list, go
 to the beginning.”

	

Note

 Once the program grows, the number of commands in our vocabulary becomes too high, making the vocabulary difficult to use.
 This is where object-oriented programming makes our life easier, because it allows us to organize our commands in a better
 way. We can associate all commands that involve a customer with some customer entity (a class), which clarifies the description.
 The program is still a sequence of commands specifying how it should proceed.

	

Functional programming provides a completely different way of extending the vocabulary. We’re not limited to adding new primitive
 commands; we can also add new control structures—primitives that specify how we can put commands together to create a program.
 In imperative languages, we were able to compose commands in a sequence or by using a limited number of built-in constructs
 such as loops, but if you look at typical programs, you’ll still see many recurring structures—common ways of combining commands.
 In fact, some of these recurring structures are very well known and are described by design patterns. But in imperative languages, we keep typing the same structure of code over and over again.

 In our example we can see a pattern, which could be expressed as “Run the first command for every customer for which the second command returns true.” Using this primitive, we can express our program simply by saying “Show customer details of every customer
 living in the UK.” In this sentence “living in the UK” specifies the second argument and “show customer details” represents
 the first.

 Let’s compare the two sentences that we’ve used to describe the same problem:

	Take the next customer from a list. If the customer lives in the UK, show their details. If there are more customers in the
 list, go to the beginning.

 	Show customer details of every customer living in the UK.

Just like the earlier analogy of making a cup of coffee, the first sentence describes exactly how to achieve our goal whereas the second describes what we want to achieve.

	

Tip

 This is the essential difference between imperative and declarative styles of programming. Surely you’ll agree that the second
 sentence is far more readable and better reflected the aim of our “program.”

	

So far we’ve been using an analogy, but we’ll see how this idea maps to actual source code later in this chapter. This isn’t
 the only aspect of functional programming that makes life easier. In the next section, we’ll look at another concept that
 makes it much simpler to understand what a program does.

 1.3.3. Understanding what a program does

 In the usual imperative style, the program consists of objects that have internal state that can be changed either directly
 or by calling some method of the object. This means that when we call a method, it can be hard to tell what state is affected
 by the operation. For example, in the C# snippet in listing 1.1 we create an ellipse, get its bounding box, and call a method on the returned rectangle. Finally, we return the ellipse to
 whatever has called it.

 Listing 1.1. Working with ellipse and rectangle (C#)

 Ellipse ellipse = new Ellipse(new Rectangle(0, 0, 100, 100));
Rectangle boundingBox = ellipse.BoundingBox;
boundingBox.Inflate(10, 10); [image:]
return ellipse;

 How do we know what the state of the Ellipse will be after the code runs just by looking at it? This is hard, because boundingBox could be a reference to the bounding box of the ellipse and Inflate [image:] could modify the rectangle, changing the ellipse at the same time. Or maybe the Rectangle type is a value type (declared using the struct keyword in C#) and it’s copied when we assign it to a variable. Perhaps the Inflate method doesn’t modify the rectangle and returns a new rectangle as a result, so the third line has no effect.

 In functional programming, most of the data structures are immutable, which means that we can’t modify them. Once the Ellipse or Rectangle is created, we can’t change it. The only thing we can do is create a new Ellipse with a new bounding box. This makes it easy to understand what a program does. As listing 1.2 shows, we could rewrite the previous snippet if Ellipse and Rectangle were immutable. As you’ll see, understanding the program’s behavior becomes much easier.

 Listing 1.2. Working with immutable ellipse and rectangle (C#)

 Ellipse ellipse = new Ellipse(new Rectangle(0, 0, 100, 100));
Rectangle boundingBox = ellipse.BoundingBox;
Rectangle smallerBox = boundingBox.Inflate(10, 10); [image:]
return new Ellipse(smallerBox); [image:]

 When you’re writing programs using immutable types, the only thing a method can do is return a result—it can’t modify the
 state of any objects. You can see that Inflate returns a new rectangle as a result [image:] and that we construct a new ellipse to return an ellipse with a modified bounding box [image:]. This approach may feel a bit unfamiliar the first time, but keep in mind that this isn’t a new idea to .NET developers.
 String is probably the best-known immutable type in the .NET world, but there are many examples, such as DateTime and other value types.

 Functional programming takes this idea further, which makes it a lot easier to see what a program does, because the result
 of a method specifies fully what the method does. We’ll talk about immutability in more detail later, but first let’s look
 at one area where it’s extremely useful: implementing multithreaded applications.

 1.3.4. Concurrency-friendly application design

 When writing a multithreaded application using the traditional imperative style, we face two problems:

	It’s difficult to turn existing sequential code into parallel code, because we have to modify large portions of the codebase
 to use threads explicitly.

 	Using shared state and locks is difficult. You have to carefully consider how to use locks to avoid race conditions and deadlocks
 but leave enough space for parallel execution.

Functional programming gives us the answers:

	
When using a declarative programming style we can introduce parallelism into existing code. We can replace a few primitives
 that specify how to combine commands with a version that executes commands in parallel.

 	Thanks to the immutability, we can’t introduce race conditions and we can write lock-free code. We can immediately see which
 parts of the program are independent, and we can modify the program to run those tasks in parallel.

These two aspects influence how we design our applications and, as a result, make it much easier to write code that executes
 in parallel, taking full advantage of the power of multicore machines. The simple fact that we’re writing immutable code doesn’t
 mean we’ll get parallelization for free. There’s work involved, but functional programming minimizes the additional effort
 we have to put in parallelization.

 We haven’t finished yet. There are other changes you should expect to see in your design when you start thinking functionally...

 1.3.5. How functional style shapes your code

 The functional programming paradigm no doubt influences how you design and implement applications. This doesn’t mean that
 you have to start all over, because many of the programming principles that you’re using today are applicable to functional
 applications as well. This is true especially at the design level in how you structure the application.

 Functional programming can cause a radical transformation of how you approach problems at the implementation level. When learning
 how to use functional programming ideas, you don’t have to make these radical changes right away. In C# you learn how to efficiently
 use the new features. In F#, you can often use direct equivalents of C# constructs while you’re still getting your feet wet.
 As you become a more experienced functional developer, you’ll learn more efficient and concise ways to express yourself.

 The following list summarizes how functional programming influences your programming style, working down from a design level
 to actual implementation:

	Functional programs on .NET still use object-oriented design as a great method for structuring applications and components.
 A large number of types and classes are designed as immutable, but it’s still possible to create standard classes, especially
 when collaborating with other .NET libraries.

 	Thanks to functional programming, you can simplify many of the standard object-oriented design patterns, because some of them
 correspond to language features in F# or C# 3.0. Also, some of the design patterns aren’t needed when the code is implemented
 in the functional way. You’ll see many examples of this throughout the book, especially in chapters 7 and 8.

 	The biggest impact of functional programming is at the lowest level, where we encode the algorithms and behavior of the application.
 Thanks to the combination of a declarative style, succinct syntax, and type inference, functional languages help us concisely
 express algorithms in a readable way.

We’ll talk about all these aspects later in the book. We’ll start with the functional values used to implement methods and
 functions before raising our sights to design and architecture. You’ll discover new patterns specific to functional programming,
 as well as learn whether the object-oriented patterns you’re already familiar with fit in with the functional world or are
 no longer required.

	

 What comes next in the introduction?
 So far, we’ve only talked about functional programming in a general sense. You’ve seen how functional programming allows you
 to extend the vocabulary when programming and how this makes your code more declarative. We’ve also talked about immutable
 data structures and what they mean for your programs. In the next section, we’ll explore four practical aspects of these two
 basic concepts:

 [image:]

 Both declarative programming and immutable data structures affect the readability and clarity of the code in general, and
 you’ll see two examples in sections 1.4.1 and 1.4.2. Then we’ll look at a current problem, parallelization, and see how declarative programming helps us parallelize code and
 how immutable data structures make the process safer.

	

So far we’ve concentrated on what makes functional programming different and why it’s worth learning, but there’s nothing
 like seeing actual code to bring things into focus. In the next section, we’ll look at the source code for the four examples
 mentioned in the sidebar.

1.4. Functional programming by example

 The goal of the next examples is to show you that functional programming isn’t by any means a theoretical discipline. You’ll
 see that you’ve perhaps even used some functional ideas in existing .NET technologies. Reading about functional programming
 will help you understand these technologies at a deeper level and use them more efficiently. We’ll also look at a couple of
 examples from later parts of the book that show important practical benefits of the functional style. In the first set of
 examples, we’ll explore declarative programming.

 1.4.1. Expressing intentions using declarative style

 In the previous section, we described how a declarative coding style makes you more productive. Programming languages that
 support a declarative style allow us to add new ways of composing basic constructs. When using this style, we’re not limited
 to basic sequences of statements or built-in loops, so the resulting code describes more what the computer should do rather than how to do it.

 We’re talking about this style in a general way because the idea is universal and not tied to any specific technology. But
 it’s best to demonstrate using a few examples that you may know already to show how it’s applied in specific technologies.
 In the first two examples, we’ll look at the declarative style of LINQ and XAML. If you don’t know these technologies, don’t
 worry—the examples are simple enough to grasp without background knowledge. In fact, the ease of understanding code—even in
 an unfamiliar context—is one of the principal benefits of a declarative style.

Working with Data in LINQ

 If you’re already using LINQ, this example will be just a reminder. But we’ll use it to demonstrate something more important.
 Here’s an example of code that works with data using the standard imperative programming style.

 Listing 1.3. Imperative data processing (C#)

 IEnumerable<string> GetExpenisveProducts() {
 List<string> filteredInfos = new List<string>(); [image:]
foreach(Product product in Products) { [image:]
if (product.UnitPrice > 75.0M) {
 filteredInfos.Add(String.Format("{0} - ${1}",
 product.ProductName, product.UnitPrice)); [image:]
 }
 }
return filteredInfos;
}

 The code, as you can see, is written as a sequence of basic imperative commands. The first statement creates a new list [image:], the second iterates over all products [image:], and a later one adds element to the list [image:]. But we’d like to be able to describe the problem at a higher level. In more abstract terms, the code filters a collection
 and returns information about every returned product.

 In C# 3.0, we can write the same code using query expression syntax. This version, shown in listing 1.4, is closer to our real goal—it uses the same idea of filtering and transforming the data.

 Listing 1.4. Declarative data processing (C#)

 IEnumerable<string> GetExpenisveProducts() {
return from product in Products
where product.UnitPrice > 75.0M [image:]
select String.Format("{0} - ${1}",
 product.ProductName, product.UnitPrice); [image:]
}

 The expression that calculates the result (filteredInfos) is composed from basic operators such as where or select. These operators take other expressions as an argument, because they need to know what we want to filter or select as a result.
 Using the previous analogy, these operators give us a new way of combining pieces of code to express our intention with less
 writing. Note that the whole calculation in listing 1.4 is written as a single expression that describes the result rather than a sequence of statements that constructs it. You’ll
 see this trend repeated throughout the book. In more declarative languages such as F#, everything you write is an expression.

 Another interesting aspect in the listing is that many technical details of the solution are now moved to the implementation
 of the basic operators. This makes the code simpler but also more flexible, because we can change implementation of these
 operators without making larger changes to the code that uses them. As you’ll see later, this makes it much easier to parallelize
 code that works with data.

 LINQ isn’t the only mainstream .NET technology that relies on declarative programming. Let’s turn our attention to Windows
 Presentation Foundation and the XAML language.

Describing User Interfaces in XAML

 Windows Presentation Foundation (WPF) is a .NET library for creating user interfaces. The library supports the declarative
 programming style. It separates the part that describes the UI from the part that implements the imperative program logic.
 But the best practice in WPF is to minimize the program logic and create as much as possible in the declarative way.

 The declarative description is represented as a treelike structure created from objects that represent individual GUI elements.
 It can be created in C#, but WPF also provides a more comfortable way using an XML-based language called XAML. Nevertheless,
 we’ll see that many similarities exist between XAML and LINQ. Listing 1.5 shows how the code in XAML compares with code that implements the same functionality using the imperative Windows Forms library.

 Listing 1.5. Creating a UI using the declarative and imperative styles (XAML and C#)

 <!-- Declarative user interface in WPF and XAML -->
<Canvas Background="Black">
 <Ellipse x:Name="greenEllipse" Width="75" Height="75"
 Canvas.Left="0" Canvas.Top="0" Fill="LightGreen" />
</Canvas>

// Imperative user interface using Windows Forms
protected override void OnPaint(PaintEventArgs e) {
 e.Graphics.FillRectangle(Brushes.Black, ClientRectangle);
 e.Graphics.FillEllipse(Brushes.LightGreen, 0, 0, 75, 75);
}

 It isn’t difficult to identify what makes the first code snippet more declarative. The XAML code describes the UI by composing
 primitives and specifying their properties. The whole code is a single expression that creates a black canvas containing a
 green ellipse. The imperative version specifies how to draw the UI. It’s a sequence of statements that specify what operations should be executed to get the required GUI. This example demonstrates the difference between saying
 what using the declarative style and saying how in the imperative style.

 In the declarative version we don’t need as much knowledge about the underlying technical details. If you look at the code,
 you don’t need to know how WPF will represent and draw the GUI. When looking at the Windows Forms example, all the technical
 details (such as representation of brushes and order of the drawing) are visible in the code. In listing 1.5, the correspondence between XAML and the drawing code is clear, but we can use XAML with WPF to describe more complicated
 runtime aspects of the program. Let’s look at an example:

 <DoubleAnimation
 Storyboard.TargetName="greenEllipse"
 Storyboard.TargetProperty="(Canvas.Left)"
 From="0.0" To="100.0" Duration="0:0:5" />

 This single expression creates an animation that changes the Left property of the ellipse (specified by the name greenEllipse) from the value 0 to the value 100 in 5 seconds. The code is implemented using XAML, but we could’ve written it in C# by
 constructing the object tree explicitly. DoubleAnimation is a class, so we’d specify its properties. The XAML language adds a more declarative syntax for writing the specification.
 In either case, the code would be declarative thanks to the nature of WPF. The traditional imperative version of code that
 implements an animation would be rather complex. It’d have to create a timer, register an event handler that would be called
 every couple of milliseconds, and calculate a new location for the ellipse.

	

 Declarative coding in .NET
 WPF and LINQ are two mainstream technologies that use a declarative style, but many others are available. The goal of LINQ
 is to simplify working with data in a general-purpose language. It draws on ideas from many data manipulating languages that
 use the declarative style, so you can find the declarative approach, for example, in SQL or XSLT.

 Another area where the declarative style is used in C# or VB.NET is when using .NET attributes. Attributes give us a way to
 annotate a class or its members and specify how they can be used in specific scenarios, such as editing a GUI control in a
 designer. This is declarative, because we specify what we expect from the designer when we’re working with the control, instead
 of writing code to configure the designer imperatively.

	

So far you’ve seen several technologies that are based on the declarative style and learned how they make problems easier
 to solve. You may be asking yourself how we use it for solving our own kinds of problems. In the next section, we’ll take
 a brief look at an example from chapter 15 that demonstrates this.

Declarative Functional Animations

 Functional programming lets you write your own libraries to solve problems in the declarative style. You’ve seen how LINQ
 does that for data manipulation and how WPF does that for UIs, but in functional programming, we’ll often create libraries
 for our own problem domains.

 When we mentioned earlier that declarative style makes it possible to ignore implementation details, we left something out.
 Functional programming doesn’t have any mystical powers that would implement the difficult part for us. We need to implement
 all the technical details when we’re designing our own library. But the implementation details can be hidden in the library
 (just like LINQ hides all the complexity from us), so we can solve the general problem once and for all.

 Listing 1.6 uses a declarative library for creating animations that we’ll develop in chapter 15. You don’t have to fully understand the code to see the benefits of using the declarative style. It’s similar to WPF in a
 sense that it describes how the animation should look rather than how to draw it using a timer.

 Listing 1.6. Creating functional animation (C#)

 [image:]

 We’ll explain everything in detail in chapter 15. You can probably guess that the animation creates two ellipses: a green and a blue one. Later, it animates the location
 of the ellipses using the Translate [image:] method and composes them using the Compose method [image:] into a single animation (represented as the animation value). If we render this animation to a form, we get the result shown in figure 1.1.

 Figure 1.1. The ellipse on the right is moving from the left to the right, and the ellipse on the left is moving from the top to the bottom.

 [image:]

 The entire declarative description is based on animated values. There’s a primitive animated value called Time.Wiggle, which has a value that swings between −1 and +1. Another primitive construct, x.Forever(), creates an animated value that always has the same value. If we multiply Wiggle by 100, we’ll get an animated value that ranges between –100 and +100 [image:]. These animated values can be used for specifying animations of graphical objects such as our two ellipses. Figure 1.1 shows them in a state where the X coordinate of the green one and the Y coordinate of the blue one are close to the +100 state.

 In listing 1.6, we don’t have to know anything about the representation of animated values, because we’re describing the whole animation
 by calculating with the primitive animated value. Another aspect of the declarative style that you can see in the code is
 that the animation is, in principle, described using a single expression. We made it more readable by declaring several local
 variables, but if you replaced occurrences of the variable with its initialization code, the animation would remain the same.

	

 Compositionality
 An important feature of declarative libraries is that we can use them in a compositional manner. You can see this aspect in
 the animation library demonstrated in listing 1.6. We can build numerous animated values like movingPoint from a few primitives such as Time.Wiggle and x.Forever(). Similarly, animations can be composed by applying operations such as Translate or Anim.Compose to simple animated graphical objects. Another example is that in LINQ, you can move a part of a complex query into a separate
 query and reuse it. We can build our own primitives (let’s say for creating orbiting circles) and use them to build our animations
 (for example, a solar system).

	

On the last few pages, we looked at declarative programming, which is an approach that we’ll use most of the time when programming
 in a functional language. Listing 1.6 shows how this style can be used in an advanced library for describing animations. In the next section, we’ll turn our attention
 to a more technical, but also very interesting, functional aspect: immutability.

 1.4.2. Understanding code using immutability

 We discussed immutability earlier when describing the benefits of the functional style. We used an example with the bounding
 box of an ellipse, where it wasn’t clear how the code behaved. Once we rewrote the code using immutable objects, it became
 easier to understand. We’ll return to this topic in more detail in later chapters. The purpose of this example is to show
 how an immutable object looks in practice.

 Again, don’t worry if you don’t grasp everything in detail at this point. Imagine we’re writing a game with some characters
 that are our target. This shows a part of the class that represents the character:

 Listing 1.7. Immutable representation of a game character (C#)

 [image:]

 In C#, we can explicitly mark a field as immutable using the readonly keyword. This means that we can’t change the value of the field, but we could still modify the target object if the field
 is a reference to a class that’s not immutable. When creating a truly immutable class, we need to make sure that all fields
 are marked as readonly and that the types of these fields are primitive types, immutable value types, or other immutable classes.

 According to these conditions, our GameCharacter class is immutable. All its fields are marked using the readonly modifier [image:]. int is an immutable primitive type and Point is an immutable value type. When a field is read-only, it can be set only when creating the object, so we can set the health
 and location of the character only in the constructor [image:]. This means we can’t modify the state of the object once it’s initialized. So, what can we do when an operation needs to
 modify the state of the game character?

 You can see the answer when you look at the HitByShooting method [image:]. It implements a reaction to a shot being fired in the game. It uses the CalculateHealth method (not shown in the sample) to calculate the new health of the character. In an imperative style, it would then update
 the state of the character, but that’s not possible because the type is immutable. Instead, the method creates a new GameCharacter instance to represent the modified character and returns it as a result.

 The class from the previous example represents a typical design of immutable C# classes, and we’ll use it (with minor modifications)
 throughout the book. Now that you know what immutable types look like, let’s see some of the consequences.

Reading Functional Programs

 You’ve seen an example that used immutable types in listing 1.1, where we concluded that it makes the code more readable. In this section, we’ll consider two snippets that we could use
 in our functional game.

 Listing 1.8 shows two examples, each involving two game characters (player and monster). The first example shows how we can execute the monster AI to perform a single step and then test whether the player is
 in danger, and the second shows how we could handle a gunshot.

 Listing 1.8. Code snippets form a functional game (C#)

 var movedMonster = monster.PerformStep(); [image:]
var inDanger = player.IsCloseTo(movedMonster); [image:]
(...)

var hitMonster = monster.HitByShooting(gunShot); [image:]
var hitPlayer = player.HitByShooting(gunShot); [image:]
(...)

 The first part of the code runs one step of the monster AI to move it [image:] to get a new state of the monster, then checks whether the player is close to the newly calculated position of the monster
 [image:].

 The second part processes a shooting in the virtual world. The code creates a value representing an updated monster [image:] and a value representing a new state of the player [image:].

 All objects in our functional game are immutable, so when we call a method on an object, it can’t modify itself or any other
 object. If we know that, we can make several observations about the previous examples. In the first snippet, we start by calling
 the PerformStep method of the monster [image:]. The method returns a new monster and we assign it to a variable called movedMonster. On the next line, [image:] we use this monster to check whether the player is close to it and is thus in danger.

 We can see that the second line of the code relies on the first one. If we changed the order of these two lines, the program
 wouldn’t compile because movedMonster wouldn’t be declared on the first line. If you implemented this in the imperative style, the method wouldn’t typically return
 any result and it’d only modify the state of the monster object.

 In that case, we could rearrange the lines and the code would compile, but it’d change the meaning of the program and the
 program could start behaving incorrectly.

 The second snippet consists of two lines that create a new monster [image:] and a new player object [image:] with an updated health property when a shooting occurs in the game. The two lines are independent, meaning that we could
 change their order. Can this operation change the meaning of the program? It appears that it shouldn’t, and when all objects
 are immutable, it doesn’t. Surprisingly, it might change the meaning in the imperative version if gunShot were mutable. The first of those objects could change some property of the gunshot, and the behavior would depend on the
 order of these two statements.

 Listing 1.8 was quite simple, but it already shows how immutability eliminates many possible difficulties. In the next section, we’ll
 see another great example, but first let’s review what you’ll find later in the book.

	

 Refactoring and unit testing
 As you know, immutability helps us understand what a program does and so is helpful when refactoring code. Another interesting
 functional refactoring is changing when some code executes. The code may run when the program hits it for the first time,
 but it may as well be delayed and execute when its result is needed. This way of evolving programs is important in F#, and
 immutability makes refactoring easier in C# too. We’ll talk about refactoring in chapter 11.

 Another area where immutability proves advantageous is when we’re creating unit tests for functional programs. The only thing
 that a method can do in an immutable world is to return a result, so we only have to test whether a method returns the right
 result for specified arguments. Again, chapter 11 provides more on this topic.

	

When discussing how functional programming makes you more productive, we mentioned immutability as an important aspect that
 makes it easier to write parallel programs. In the next section we’ll briefly explore that and other related topics.

 1.4.3. Writing efficient parallel programs

 The fact that functional programming makes it easier to write parallel programs may be the reason you picked up this book.
 In this section, we’ll explore a couple of samples demonstrating how functional programs can be easily parallelized. In the
 first two examples, we’ll use Parallel Extensions to .NET, a new technology from Microsoft for writing parallel applications
 that ships as part of .NET 4.0. As you might expect, Parallel Extensions to .NET lends itself extremely well to functional
 code. We won’t go into the details—we want to demonstrate that parallelizing functional programs is significantly simpler
 and, more importantly, less error prone than it is for the imperative code.

Parallelizing Immutable Programs

 First let’s take another look at listing 1.8. We’ve seen two snippets from a game written in a functional way. In the first snippet, the second line uses the outcome
 of the first line (the state of the monster after movement). Thanks to the use of immutable classes, we can see that this
 doesn’t give us any space for introducing parallelism.

 The second snippet consists of two independent lines of code. We said earlier that in functional programming, we can run independent
 parts of the program in parallel. Now you can see that immutability gives us a great way to spot which parts of the program
 are independent. Even without knowing any details, we can look at the change that makes these two operations run in parallel.
 The change to the source code is minimal:

 var hitMonster = Task.Factory.StartNew(() =>
 monster.HitByShooting(gunShot));
var hitPlayer = Task.Factory.StartNew(() =>
 player.HitByShooting(gunShot));

 The only thing that we did was wrap the computation in a Task type from the Parallel Extensions library. (We’ll talk about Future in detail in chapter 14.) The benefit isn’t only that we have to write less code, but that we have a guarantee that the code is correct. If you did
 a similar change in an imperative program, you’d have to carefully review the HitByShooting method (and any other method it calls) to find all places where it accesses some mutable state and add locks to protect the
 code that reads or modifies shared state. In functional programming everything is immutable, so we don’t need to add any locks.

 The example in this section is a form of lower-level task-based parallelism, which is one of three approaches that we’ll see in chapter 14. In the next section we’ll look at the second approach, which benefits from the declarative programming style.

Declarative Parallelism Using PLINQ

 Declarative programming style gives us another great technique for writing parallel programs. You know that the code written
 using the declarative style is composed using primitives. In LINQ, these primitives are query operators such as where and select. In the declarative style, we can easily replace the implementation of these primitives and that’s exactly what PLINQ does: it allows us to replace standard query operators with query operators that
 run in parallel.

 Listing 1.9 shows a query that updates all monsters in our fictitious game and removes those that died in the last step of the game.
 The change is extremely simple, so we can show you both versions in a single listing.

 Listing 1.9. Parallelizing data processing code using PLINQ (C#)

	
 var updated =
from m in monsters
let nm = m.PerformStep()
where nm.IsAlive select nm;

 	
 var updated =
from m in monsters.AsParallel() [image:]
let nm = m.PerformStep()
where nm.IsAlive select nm;

The only change that we made in the parallel version on the right side is that we added a call to the AsParallel method [image:]. This call changes the primitives that are used when running the query and makes the whole fragment run in parallel. You’ll
 see how this works in chapter 12, where we’ll discuss declarative computations like this in general, and in chapter 14, which focuses on parallel programming specifically.

 You may be thinking that you don’t use LINQ queries that often in your programs. This is definitely a valid point, because
 in imperative programs, LINQ queries are used less frequently. But functional programs do most of their data processing in
 the declarative style. In C#, they can be written using query expressions whereas F# provides higher-order list-processing
 functions (as we’ll see in chapters 5 and 6). This means that after you’ve read this book, you’ll be able to use declarative programming more often when working with
 data. As a result, your programs will be more easily parallelizable.

 We’ve explained two ways in which functional programming makes parallelization simpler. This is one of the reasons that makes
 functional ideas very compelling today and we’ll discuss this and related topics in chapters 13 and 14.

 Before we can start discussing real functional programs, we need to introduce the F# language. Let’s start by looking at classical
 “Hello world” program as well as at the F# tools. The following section also briefly introduces the typical development process
 used when developing F# solutions.

1.5. Introducing F#

 We’ll introduce F# in stages throughout the book, as and when we need to. This section covers the basics, and we’ll write
 a couple of short examples so you can start to experiment for yourself. We’ll examine F# more carefully after summarizing
 important functional concepts in chapter 2. Our first real-world F# application will come in chapter 4. After discussing the “Hello world” sample, we’ll talk about F# to explain what you can expect from the language. We’ll also
 discuss the typical development process used by F# developers, because it’s quite different from what you’re probably used
 to with C#.

	

 Microsoft PLINQ and Google MapReduce
 Google has developed a framework called MapReduce [Dean, Ghemawat, 2004] for processing massive amounts of data in parallel. This framework distributes the work between computers in large clusters
 and uses the same ideas as PLINQ. The basic idea of MapReduce is that the user program describes the algorithm using two operations
 (somewhat similar to where and select in PLINQ). The framework takes these two operations and the input data, and runs the computation. You can see a diagram visualizing
 the computation in figure 1.2.

 Figure 1.2. In the MapReduce framework, an algorithm is described by specifying map task and a reduce task. The framework automatically
 distributes the input across servers and processes the tasks in parallel.

 [image:]

 The framework splits the input data into partitions and executes the map task (using the first operation from the user) on
 each of the partitions. For example, a map task may find the most important keywords in a web page. The results returned by
 map tasks are then collected and grouped by a specified key (for example, the name of the domain) and the reduce task is executed
 for each of the groups. In our example, the reduce task may summarize the most important keywords for every domain.

	

1.5.1. Hello world in F#

 The easiest way to start using F# is to create a new script file. Scripts are lightweight F# sources that don’t have to belong
 to a project and usually have an extension of .fsx. In Visual Studio, you can select File > New > File (or press Ctrl+N) and
 select F# Script File from the Script category. Once we have the file, we can jump directly to the “Hello world” code.

 Listing 1.10. Printing hello world (F#)

 let message = "Hello world!" [image:]
printfn "%s" message [image:]

 Although this isn’t the simplest possible “Hello world” in F#, it would be fairly difficult to write anything interesting
 about the single-line version. Listing 1.10 starts with a value binding [image:]. This is similar to variable declaration, but there’s one important difference: the value is immutable and we can’t change
 its value later. This matches with the overall functional style to make things immutable (you’ll learn about this in the next
 two chapters).

 After assigning the value Hello world to the symbol message, the program continues with a call to a printfn function [image:]. It is important to note that arguments to F# functions are usually only separated by spaces with no surrounding parentheses
 or commas. We’ll sometimes write parentheses when it makes the code more readable, such as when writing cos(1.57), but even in this case the parentheses are optional. We’ll explain the convention that we’ll use as we learn the core concepts
 of F# in the next couple of chapters.

 The first argument to the printfn function is a format string. In our example, it specifies that the function should take only one additional parameter, which
 will be a string. The type is specified by the %s in the format string (the letter s stands for string) and the types of arguments are even checked by the compiler. Now we’ll show you how to run the code (listing 1.11).

	

Tip

 The easiest way to run the code is to use the interactive tools provided by F# tool chain. These tools allow you to use the
 interactive style of development. This means that you can easily experiment with code to see what it does and verify whether
 it behaves correctly by running it with a sample input. Some languages have an interactive console, where you can paste code
 and execute it. This is called read-eval-print loop (REPL), because the code is evaluated immediately.

 In F#, we can use a command prompt called F# Interactive, but the interactive environment is also integrated inside the Visual
 Studio environment. This means that you can write the code with the full IDE and IntelliSense support, but also select a block
 of code and execute it immediately to test it.

	

If you’re using F# Interactive from the command line, paste in the previous code, and type ;; and press Enter to execute it.

 If you’re using Visual Studio, select the code and press Alt+Enter to send it to the interactive window. Let’s have a look
 at the results that we get when we run the code.

 Listing 1.11. Running the Hello world program (F# Interactive)

 Microsoft F# Interactive, (c) Microsoft Corporation, All Rights Reserved
F# Version 1.9.7.4, compiling for .NET Framework Version v2.0.50727

> (...);;
Hello world! [image:]
val message : string = "Hello world!" [image:]

 The first line [image:] is an output from the printfn function, which prints the string and doesn’t return any value. The second line, [image:] generated by the value binding, reports that a value called message was declared and that the type of the value is string. We didn’t explicitly specify the type, but F# uses a technique called type inference to deduce what the types of values
 are, so the program is statically typed just as in C#.

 Writing something like this “Hello world” example doesn’t demonstrate how working with F# looks at the larger scale. The usual
 F# development process is worth a look because it’s quite interesting.

 1.5.2. From simplicity to the real world

 When starting a new project, you don’t usually know at the beginning how the code will look at the end. At this stage, the
 code evolves quite rapidly. But as it becomes more mature, the architecture becomes more solid and you’re more concerned with
 the robustness of the solution rather than with the flexibility. Interestingly, these requirements aren’t reflected in the
 programming languages and tools that you use. F# is appealing from this point of view, because it reflects these requirements
 in both tools and the language.

	

 F# development process in a nutshell
 The F# Interactive tool allows you to verify and test your code immediately while writing it. This tool is extremely useful
 at the beginning of the development process, because it encourages you to try various approaches and choose the best one.
 Also, when solving some problem where you’re not 100 percent sure of the best algorithm, you can immediately try the code.
 When writing F# code, you’ll never spend a lot of time debugging the program. Once you first compile and run your program,
 you’ve already tested a substantial part of it interactively.

 When talking about testing in the early phase, we mean that you’ve tried to execute the code with various inputs to interactively verify that it works.
 In the later phase, we can turn these snippets into unit tests, so the term testing means a different thing. When working with a more mature version of our project, we can use tools such as Visual Studio’s
 debugger or various unit-testing frameworks.

 F# as a language reflects this direction as well. When you start writing a solution to any problem, you start with only the
 most basic functional constructs, because they make writing the code as easy as possible. Later, when you find the right way
 to approach the problem and you face the need to make the code more polished, you end up using more advanced features that
 make the code more robust, easier to document, and accessible from other .NET languages like C#.

	

Let’s see what the development process might look like in action. We’ll use a few more F# constructs, but we won’t focus primarily
 on the code. The more important aspect is how the development style changes as the program evolves.

Starting with Simplicity

 When starting a new project, you’ll usually create a new script file and try implementing the first prototype or experiment
 with the key ideas. At this point, the script file contains sources of various experiments, often in an unorganized order.
 Figure 1.3 shows how your Visual Studio IDE might look like at this stage.

 Figure 1.3. Using F# Interactive, we can first test the code and then wrap it into a function.

 [image:]

 Figure 1.3 shows only the editor and the F# Interactive window, but that’s all we need now because we don’t have a project yet. As you
 can see, we first wrote a few value bindings to test how string concatenation works in F# and entered the code in the F# Interactive
 window to verify that it works as expected. After we learned how to use string concatenation, we wrapped the code in a function.
 (We’ll describe functions in chapter 3.)

 Next, we selected the function and pressed Alt+Enter to send it to F# Interactive. If we enter code this way, the shell won’t
 print the source code again: it prints only information about the values and functions we declared. After that, we entered
 an expression, sayHello("world"), to test the function we just wrote. Note that the commands in F# Interactive are terminated with ;;. This allows you to easily enter multiline commands.

 Once we start writing more interesting examples, you’ll see that the simplicity is supported by using the functional concepts.
 Many of them allow you to write the code in a surprisingly terse way, and thanks to the ability to immediately test the code,
 F# is powerful in the first phase of the development. (Part 2 focuses on the easy-to-use functional constructs.) As the program grows larger, we’ll need to write it in a more polished
 way and integrate it with the usual .NET techniques. Fortunately, F# helps us do that too.

Ending with Robustness

 Unlike many other languages that are popular for their simplicity, F# lives on the other side as well. In fact, it can be
 used for writing mature, robust, and safe code. The usual process is that you start with simple code, but as the codebase
 becomes larger you refactor it in a way that makes it more accessible to other F# developers, enables writing better documentation,
 and supports better interoperability with .NET and C#.

 Perhaps the most important step in order to make the code accessible from other .NET languages is to encapsulate the functionality
 into .NET classes. The F# language supports the full .NET object model, and classes authored in F# appear just like ordinary
 .NET classes with all the usual accompaniments, such as static type information and XML documentation.

 You’ll learn more about F# object types in chapter 9, and you’ll see many of the robust techniques in part 4. For now, let’s prove that you can use F# in a traditional .NET style as well. Listing 1.12 shows how to wrap the sayHello function in a C# style class and add a Windows Forms UI.

 Listing 1.12. Object-oriented “Hello world” using Windows Forms (F#)

 [image:]

 Listing 1.12 starts with several open directives [image:] that import types from .NET namespaces. Next, we declare the HelloWindow class [image:], which wraps the code to construct the UI and exposes two methods. The first method [image:] wraps the functionality for concatenating “Hello world” messages that we interactively developed earlier. The second one
 runs the form as a standard Windows Forms application [image:]. The class declaration appears just like an ordinary C# class, with the difference that F# has a more lightweight syntax
 for writing classes. The code that uses the class in F# will look just like your usual C# code:

 let hello = new HelloWindow()
hello.SayHello("dear reader")
hello.Run()

 At this stage, we’re developing the application in a traditional .NET style, so we’ll run it as a standalone application.
 The interactive style helped us, because we’d already interactively tested the part that deals with string concatenation.
 You can see how the resulting application looks in figure 1.4.

 Figure 1.4. Running our WinForms application created using the OOP style in F#

 [image:]

 In this section, you had a taste of what the typical F# development process feels like. We haven’t explained every F# construct
 we’ve used, because we’ll see how everything works later in the book. We started with an example that’s simple but that demonstrates
 how you can use the F# language to write pretty standard .NET programs.

	

 What can F# offer to a C# developer?
 F# is well-suited for writing code using simple concepts at the beginning and turning it into a traditional .NET version later,
 where C# is largely oriented toward the traditional .NET style. If you’re a C# developer creating real-world applications,
 you can easily take advantage of F# in two ways.

 The first option is to use F# for rapid prototyping and experimenting with the code as well for exploring how .NET libraries
 work. As you’ve seen, using F# interactively is easy, so writing a first sketch of the code can be done in F#. You’ll save
 a lot of time when trying several approaches to a problem or exploring how a new library works. If you require code written
 in C#, you can rewrite your prototype to C# later and still save a lot of development time.

 The second option is to reference a library written in F# from your C# project. F# is a fully compiled .NET language, so there
 are no technical reasons for preferring C# source code. This means that you can make sure that your library can be easily
 accessed from C# by turning the code from a simple to a traditional .NET version and use F# for writing parts of a larger
 .NET solution.

	

As we close this chapter, it’s very likely that you’re still finding some of the F# language constructs puzzling, but the
 purpose of this introduction wasn’t to teach you everything about F#; our goal was to show you how F# looks and feels, so
 you can experiment with it as we explore more interesting examples in the subsequent chapters.

1.6. Summary

 This chapter gave you a brief overview of functional programming and what makes it interesting. We introduced the declarative
 programming style, which we can use when writing applications and libraries in a functional style. The declarative programming
 style is already used in many successful technologies such as WPF and LINQ, but we can also use it for writing functional
 solutions to other kinds of problems in C# 3.0.

 Parallel programming is a big challenge for modern software development. Using a functional approach makes it significantly
 easier, thanks to the use of immutability and declarative programming. Immutability helps us write correct and safe code,
 and declarative programming allows us to hide unnecessary technical details when solving problems.

 In the next chapter, you’ll see a much broader picture of functional programming. We’ll explore the important ideas from a
 high-level perspective and demonstrate how they relate to one another. Even though we won’t look at much real code, the next
 chapter will give you a solid foundation you can build on in the rest of the book.

Chapter 2. Core concepts in functional programming

 This chapter covers

	Understanding concepts and foundations

 	Programming with immutable data

 	Reasoning about functional code

 	Working with functional data types and values

If you ask three functional programmers what they consider the most essential aspect of the functional paradigm, you are likely
 to get three different answers. The reason is that functional programming has existed for a long time and there’s a wide range
 of diverse programming languages. Every language emphasizes a different set of aspects while giving less importance to others.
 Most of the concepts are to some extent present in all functional languages.

 The central part of this chapter focuses on these common ideas, exploring the basic features and techniques that functional
 programmers have in their toolset. We’ll investigate the concepts from a high-level perspective, and you’ll see how they fit
 together to form one coherent way of tackling problems.

 We’ll begin by exploring how functional programs represent program state and how they change it. In OOP the state is carried
 by objects, while in functional programming the key role is played by functions and data types. Next, we’ll look at language
 features that support the declarative programming style we introduced in chapter 1. Finally, we’ll talk about types and how they help verify program correctness. This aspect isn’t shared by all functional
 languages, but it’s essential for many of them (including OCaml, F#, and Haskell). Their implementation of type checking is
 advanced and differs in many ways from what you may be used to from C#.

 We won’t go into much programming yet. Instead you’ll get a general understanding of the key concepts and a better feeling
 about how functional programs look. The sidebar “What comes next in this chapter?” gives an overview of the organization of
 this chapter. We discussed some of the concepts in chapter 1, but we focused on their consequences. In this chapter we’ll analyze their fundamentals.

	

 What comes next in this chapter?
 In chapter 1, we focused on two concepts: immutability and declarative style. Here we’ll introduce some of the language features that
 make them possible. We’ll also talk about types, another essential concept discussed in this book.

 [image:]

 In section 2.1, we’ll begin with a brief digression and explore the mathematical background of functional programming. Reading that section
 isn’t necessary, but you may find it interesting, because it demonstrates where many of the concepts come from. After this
 introduction, we’ll return to functional programming in a more concrete form. We’ll talk about immutable data structures and
 in particular, how we can write programs that work with them (section 2.2.3). In section 2.3.2 we’ll take a first look at features such as higher-order functions that are essential for writing declarative code in functional
 languages. We’ll show you how types in F# prevent us from making many common programming errors (section 2.4.4).

