

 [image: cover]

Ruby in Practice

 Jeremy McAnally & Assaf Arkin

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Development Editor: Nermina Miller
Copyeditor: Andy Carroll
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Dedication

 For my wife, family, and God. Thanks for not abandoning and/or smiting me, depending on the case.

 J.M.

 To my wife, Zoe. You’re the bestest!

 A.A.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Preface

 Acknowledgments

 About this Book

 1. Ruby techniques

 Chapter 1. Ruby under the microscope

 Chapter 2. Testing Ruby

 Chapter 3. Scripting with Ruby

 2. Integration and communication

 Chapter 4. Ruby on Rails techniques

 Chapter 5. Web services

 Chapter 6. Automating communication

 Chapter 7. Asynchronous messaging

 Chapter 8. Deployment

 3. Data and document techniques

 Chapter 9. Database facilities and techniques

 Chapter 10. Structured documents

 Chapter 11. Identity and authentication

 Chapter 12. Searching and indexing

 Chapter 13. Document processing and reporting

 Appendix A. Installing Ruby

 Appendix B. JRuby

 Appendix C. Deploying web apps

 Index

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Figures

 List of Tables

 List of Listings

 Preface

 Acknowledgments

 About this Book

 1. Ruby techniques

 Chapter 1. Ruby under the microscope

 1.1. Why Ruby now?

 1.1.1. Optimizing developer cycles

 1.1.2. Language features

 1.2. Ruby by example

 1.3. Facets of Ruby

 1.3.1. Duck typing

 1.3.2. Simplicity

 1.3.3. DRY efficiency

 1.3.4. Functional programming

 1.4. Metaprogramming

 1.4.1. Getting started with metaprogramming

 1.4.2. Domain-specific languages

 1.4.3. Refining your metaprogramming

 1.5. Summary

 Chapter 2. Testing Ruby

 2.1. Testing principles

 2.1.1. Why bother with testing?

 2.1.2. Types of testing

 2.1.3. Testing workflow

 2.2. Test-driven development with Ruby

 2.3. Behavior-driven development with RSpec

 2.3.1. What is behavior-driven development?

 2.3.2. Testing with RSpec

 2.4. A testing environment

 2.4.1. Setting up a baseline with fixture data

 2.4.2. Faking components with stubs

 2.4.3. Setting behavior expectations with mock objects

 2.5. Testing your tests

 2.5.1. Testing code coverage

 2.5.2. Testing quality with Heckle

 2.6. Summary

 Chapter 3. Scripting with Ruby

 3.1. Scripting with Ruby

 Problem

 Solution

 Discussion

 3.2. Automating with OLE and OSA

 3.2.1. Automating Outlook with Ruby

 3.2.2. Automating iCal with Ruby

 3.3. Using Rake

 3.3.1. Using tasks

 3.3.2. File tasks

 3.4. Summary

 2. Integration and communication

 Chapter 4. Ruby on Rails techniques

 4.1. Extending Rails

 4.1.1. Using helpers to expose Ruby libraries

 4.1.2. Metaprogramming away duplication

 4.1.3. Turning your code into reusable components

 4.2. Rails performance

 4.2.1. Benchmarking a Rails application

 4.2.2. Profiling a Rails application

 4.3. Summary

 Chapter 5. Web services

 5.1. Using HTTP

 5.1.1. HTTP GET

 5.1.2. HTTP POST

 5.1.3. Serving HTTP requests

 5.2. REST with Rails

 5.2.1. RESTful resources

 5.2.2. Serving XML, JSON, and Atom

 5.2.3. Using ActiveResource

 5.3. SOAP services

 5.3.1. Implementing the service

 5.3.2. Invoking the service

 5.4. Summary

 Chapter 6. Automating communication

 6.1. Automating email

 6.1.1. Automating sending email

 6.1.2. Receiving email

 6.1.3. Processing email

 6.2. Automating instant communication

 6.2.1. Sending messages with AIM

 6.2.2. Automating Jabber

 6.3. Summary

 Chapter 7. Asynchronous messaging

 7.1. Open source messaging servers

 7.1.1. Using ActiveMQ

 7.1.2. Using reliable-msg

 7.2. WebSphere MQ

 7.2.1. Queuing messages

 7.2.2. Processing messages

 7.3. Summary

 Chapter 8. Deployment

 8.1. Creating deployable packages with RubyGems

 8.1.1. Using RubyGems in your organization

 8.1.2. Setting up a RubyGems repository

 8.2. Deploying web applications

 8.2.1. Simplifying deployment with Capistrano

 8.2.2. Tailing remote logs with Capistrano

 8.2.3. Deploying with Vlad the Deployer

 8.3. Monitoring with God.rb

 8.3.1. A typical God setup

 8.3.2. Notifications

 8.4. Summary

 3. Data and document techniques

 Chapter 9. Database facilities and techniques

 9.1. Using plain-text files for data persistence

 Problem

 Solution

 Discussion

 9.2. Using the (g)dbm API

 Problem

 Solution

 Discussion

 9.3. The MySQL driver

 Problem

 Solution

 Discussion

 9.4. Using DBI

 Problem

 Solution

 Discussion

 9.5. Summary

 Chapter 10. Structured documents

 10.1. XML in practice

 10.1.1. Using XML to read configuration files

 10.1.2. Writing configuration data to disk

 10.2. Parsing HTML and XHTML with Hpricot

 10.2.1. Post-processing HTML output

 10.2.2. Reading broken HTML

 10.3. Writing configuration data: revisited

 Problem

 Solution

 Discussion

 10.4. Reading RSS feeds

 Problem

 Solution

 Discussion

 10.5. Creating your own feed

 Problem

 Solution

 Discussion

 10.6. Using YAML for data storage

 Problem

 Solution

 Discussion

 10.7. Summary

 Chapter 11. Identity and authentication

 11.1. Securely storing a password

 Problem

 Solution

 Discussion

 11.1.1. Authenticating against LDAP

 11.2. Authenticating against Active Directory

 Problem

 Solution

 Discussion

 11.3. Adding authentication to your Rails application

 Problem

 Solution

 Discussion

 11.4. Semi-private, personalized feeds

 Problem

 Solution

 Discussion

 11.5. HTTP Basic Authentication

 Problem

 Solution

 Discussion

 11.6. Integrating OpenID into your application

 Problem

 Solution

 Discussion

 11.7. Summary

 Chapter 12. Searching and indexing

 12.1. The principles of searching

 12.2. Standalone and high-performance searching

 12.2.1. Standalone indexing and search with Ferret

 12.2.2. Integrating with the Solr search engine

 12.2.3. Ultrafast indexing and searching with FTSearch

 12.2.4. Indexing and searching Rails data with Ferret and Solr

 12.2.5. Searching in Rails with Ultrasphinx

 12.3. Integrating search with other technologies

 12.3.1. Web search using a basic API (Yahoo!)

 12.3.2. Web search using a scraping technique (Google)

 12.4. Summary

 Chapter 13. Document processing and reporting

 13.1. Processing CSV data

 Problem

 Solution

 Discussion

 13.2. Generating and emailing daily reports

 Problem

 Solution

 Discussion

 13.3. Comparing text reports to well-formed data

 Problem

 Solution

 Discussion

 13.4. Creating customized documents for printing

 Problem

 Solution

 Discussion

 13.5. Reporting against large datasets

 Problem

 Solution

 Discussion

 13.6. Summary

 Appendix A. Installing Ruby

 A.1. Installing on Windows

 A.2. Installing on Mac OS X

 A.3. Installing on Linux

 A.4. More tips

 A.4.1. Requiring RubyGems with RUBYOPT

 A.4.2. Improving IRB with Wirble

 A.4.3. Accessing Ruby’s documentation

 Appendix B. JRuby

 B.1. Installing and using JRuby

 B.2. JRuby and Ruby side by side

 B.3. Mixing Ruby and Java

 B.4. Scripting with Ruby

 B.5. Deploying web applications

 Appendix C. Deploying web apps

 C.1. An overview of deployment options

 C.2. Reverse proxying

 C.3. Setting up Thin

 C.4. Setting up Apache load balancing

 C.5. Summary

 Index

List of Figures

 Chapter 1. Ruby under the microscope

 Figure 1.1. For our graph, we will build a simple domain model: products will have purchases, which belong to the stores where
 they happened.

 Figure 1.2. Our finished graph: in about 40 lines of code, we pulled data from the database, processed it, and graphed it
 in a rather attractive fashion.

 Figure 1.3. Some languages create a gulf between your ideas and working code.

 Figure 1.4. Ideas can more closely match the resulting code if your expertise and perspective create an overlap between the
 framing of an idea and the real code that will execute it.

 Figure 1.5. Ruby can be bent to your problem domain, making the overlap between your problem domain and real code significant.

 Chapter 2. Testing Ruby

 Figure 2.1. Test-driven development is a five-step process: add, fail, code, test, refactor.

 Figure 2.2. Test suites are composed of a collection of unit tests that are run one by one by a test runner.

 Figure 2.3. The behavior-driven development process starts with specification, adds tests, and builds an implementation that
 matches the specification and passes the tests.

 Figure 2.4. An HTML report showing successful, failing, and pending specifications

 Figure 2.5. A stubbed class will seem to act like the real object but won’t actually behave like it. In this case, the stub
 doesn’t grab data from a remote service, but to the code consuming the API, it appears to.

 Figure 2.6. The rcov tool presents its results as HTML or text; the HTML view has nice graphs that illustrate code coverage
 and individual pages for each file tested.

 Chapter 4. Ruby on Rails techniques

 Figure 4.1. The output from our syntax highlighting library

 Chapter 5. Web services

 Figure 5.1. Simple task manager service

 Chapter 10. Structured documents

 Figure 10.1. A graphical representation of the calculator XML document. Element nodes are represented by rounded rectangles,
 attributes by squared rectangles, and text nodes by bubbles.

 Chapter 13. Document processing and reporting

 Figure 13.1. Ruport’s PDF output

 Figure 13.2. The PDF output from our Purchase Notes renderer and formatter

 Figure 13.3. Row-based PDF output

List of Tables

 Chapter 1. Ruby under the microscope

 Table 1.1. The eval family of methods

 Chapter 2. Testing Ruby

 Table 2.1. Ruby’s built-in testing library offers a large number of assertions baked right in.

 Table 2.2. RSpec has numerous specifications you can use to verify the behavior of your application.

 Chapter 6. Automating communication

 Table 6.1. A full listing of the Net::TOC callbacks

 Chapter 8. Deployment

 Table 8.1. The available options to the gem server command

List of Listings

 Chapter 1. Ruby under the microscope

 Listing 1.1. SQL for graph example database

 Listing 1.2. Setting up our database with ActiveRecord

 Listing 1.3. Generating a graph with Scruffy

 Listing 1.4. Using blocks to reduce code duplication

 Listing 1.5. A small example of DRY syntax

 Listing 1.6. Map is one way Ruby uses functional programming for parallelism

 Listing 1.7. Using attr_accessor to define accessor methods on your class

 Listing 1.8. A reimplementation of attr_accessor

 Listing 1.9. Using ActsAsTaggable to get a lot of features in one line of code

 Listing 1.10. Building an RSS feed for our projects

 Listing 1.11. A simplified look at XML::Builder’s use of method_missing

 Listing 1.12. A validation domain-specific language example

 Chapter 2. Testing Ruby

 Listing 2.1. A simple test using Test::Unit

 Listing 2.2. Using setup and teardown to prepare tests

 Listing 2.3. Tests for our to-be-implemented XML reporter

 Listing 2.4. Our PayrollReporter implemented

 Listing 2.5. A context for an empty queue string

 Listing 2.6. A few specs for a string object

 Listing 2.7. A basic spec for our IntranetReader class

 Listing 2.8. Our implementation of IntranetReader

 Listing 2.9. A process checker class and test

 Listing 2.10. A revised test with fixture data

 Listing 2.11. Our refactored and expanded tests

 Listing 2.12. Building tests for our supplier class

 Listing 2.13. A class for handling purchasing from a supplier

 Listing 2.14. A stubbed SupplierInterface

 Listing 2.15. Tests for shipping components

 Listing 2.16. An updated test to use our custom mock

 Listing 2.17. The previous mocking example, rewritten using Mocha

 Listing 2.18. A simple class to Heckle

 Listing 2.19. Our tests to Heckle

 Listing 2.20. Our updated tests that can stand up to even a strong Heckling!

 Chapter 3. Scripting with Ruby

 Listing 3.1. Turn our photos into smaller, Polaroid-like images, and upload to Amazon S3

 Listing 3.2. Twitter a link to an image

 Listing 3.3. Turn TODO and FIXME comments into Outlook tasks

 Listing 3.4. Turn TODO and FIXME comments into iCal To Dos

 Listing 3.5. AppleScript example for adding a To Do item to iCal

 Listing 3.6. Ruby example for adding a To Do item to iCal using Appscript

 Listing 3.7. Ruby example for adding a To Do item to iCal using RubyOSA

 Listing 3.8. Growl notification using Cocoa API

 Listing 3.9. Rakefile for creating RDoc documentation and running RSpec tests

 Listing 3.10. Running rake rdoc twice with --trace

 Listing 3.11. Listing all the tasks and their prerequisites

 Listing 3.12. Tasks to merge JavaScript files and create HTML from Textile documents

 Listing 3.13. Example Textile document that we’ll convert to HTML

 Chapter 4. Ruby on Rails techniques

 Listing 4.1. The whole Ultraviolet helper

 Listing 4.2. A URL validation library

 Listing 4.3. Our model, pre-metaprogramming

 Listing 4.4. Our metaprogrammed model

 Chapter 5. Web services

 Listing 5.1. Get historical stock prices from Google Finance

 Listing 5.2. Using HTTP POST and XmlSimple to send a document to the web server

 Listing 5.3. A service for packaging log files and serving them as a zip file

 Listing 5.4. Defining our task manager resources in config/routes.rb

 Listing 5.5. Routes for our RESTful tasks list

 Listing 5.6. Routes for our RESTful tasks list

 Listing 5.7. Responding with different content types

 Listing 5.8. An Atom feed for our tasks list

 Listing 5.9. Using our task manager with ActiveResource

 Listing 5.10. WSDL describing our task manager service

 Listing 5.11. Our task manager servant

 Listing 5.12. A simple task manager SOAP service

 Listing 5.13. Task manager client using WSDLDriver

 Listing 5.14. Task manager client using generated stubs

 Chapter 6. Automating communication

 Listing 6.1. Constructing a basic MailFactory object, attribute by attribute

 Listing 6.2. Sending email to administrators

 Listing 6.3. Fetching email using POP3

 Listing 6.4. Restarting MySQL via email

 Listing 6.5. Creating tickets via email

 Listing 6.6. Sending an IM with Net::TOC

 Listing 6.7. Sending the results of uptime over AIM

 Listing 6.8. Building a simple Jabber::Simple object

 Listing 6.9. Managing MySQL via Jabber rather than email

 Chapter 7. Asynchronous messaging

 Listing 7.1. A method that takes a Ruby error object and generates XML from it

 Listing 7.2. Implementing our error reporter

 Listing 7.3. Processing all messages from the queue

 Listing 7.4. Our testing consumer for the error reporter

 Listing 7.5. Demonstrating the Reliable Messaging library’s core functionality

 Listing 7.6. Passing data from a Rails application to a Ruby application

 Listing 7.7. Creating a work order in the database and passing a message

 Listing 7.8. Consuming messages from the queue

 Listing 7.9. AccountsController create action for creating a new account

 Listing 7.10. A config/wmq.yml configuration file

 Listing 7.11. The app/controllers/application.rb file modified to read WMQ configuration

 Listing 7.12. AccountsController queues new accounts in ACCOUNTS.CREATED

 Listing 7.13. Test case for putting message in ACCOUNTS.CREATED

 Listing 7.14. Processing messages from WMQ to create new leads

 Chapter 8. Deployment

 Listing 8.1. Gem specification

 Listing 8.2. Requiring Ruby files from a gem

 Listing 8.3. Deployable binary

 Listing 8.4. Gem specification including binary

 Listing 8.5. Using a custom repository with the gem command

 Listing 8.6. Using a custom location for gem server

 Listing 8.7. Capfile for deploying a simple daemon

 Listing 8.8. Tailing a remote log

 Listing 8.9. Rakefile loading Vlad with Subversion and Mongrel recipes

 Listing 8.10. config/deploy.rb for Vlad the Deployer

 Listing 8.11. Watching daemon processes with God.rb

 Listing 8.12. Telling God.rb how to notify our team members

 Listing 8.13. Monitoring with notifications

 Chapter 9. Database facilities and techniques

 Listing 9.1. Class declaration and setup method for testing the contact code

 Listing 9.2. Testing the removal of a Contact object from a ContactList object

 Listing 9.3. Initial implementation of the ContactList class

 Listing 9.4. The Contact class we use to store contact records

 Listing 9.5. Saving and loading a ContactList object

 Listing 9.6. Second set of methods for the ContactList class

 Listing 9.7. The contacts output file, in YAML format

 Listing 9.8. The contact application tests

 Listing 9.9. The Contact class for the gdbm implementation of the contacts library

 Listing 9.10. The ContactList class for storing contact records

 Listing 9.11. Adding and removing a contact

 Listing 9.12. The remaining methods for the ContactList class

 Listing 9.13. An example of a YAML file for contact records

 Listing 9.14. SQL instructions for creating the contacts database

 Listing 9.15. The loop through the contacts table

 Chapter 10. Structured documents

 Listing 10.1. Our calculator’s XML configuration file

 Listing 10.2. Getting our XML into Ruby with REXML

 Listing 10.3. Reading and writing the configuration

 Listing 10.4. A simple postprocessing filter

 Listing 10.5. The associated CSS

 Listing 10.6. A sample blog entry

 Listing 10.7. Getting the HTML into a Post object

 Listing 10.8. Redone Config#to_xml

 Listing 10.9. Redone Keyboard#to_xml

 Listing 10.10. A simple RSS parser

 Listing 10.11. A small command-line script for running the RSS parser

 Listing 10.12. Wrapping FeedTools

 Listing 10.13. Creating a new feed

 Listing 10.14. Generating RSS 2.0

 Listing 10.15. Generating ATOM 1.0

 Listing 10.16. Using YAML to solve the calculator config problem

 Listing 10.17. Using the YAML solution in an equivalent manner to our XML solution

 Chapter 11. Identity and authentication

 Listing 11.1. An ActiveRecord class implementing password hashing

 Listing 11.2. Per-user salt for password hashing

 Listing 11.3. Authenticating with ruby-net-ldap

 Listing 11.4. Authenticating against Active Directory using ruby-net-ldap

 Listing 11.5. An ActiveRecord migration to add our token column

 Listing 11.6. A User model that generates tokens upon creation

 Listing 11.7. A comments controller implementing our token authentication

 Listing 11.8. Authenticating with HTTP Basic using CGI

 Listing 11.9. A simple OpenID login controller

 Listing 11.10. A database migration to create the OpenID tables

 Listing 11.11. Edited view to support OpenID authentication

 Listing 11.12. A new SessionsController that supports OpenID

 Chapter 12. Searching and indexing

 Listing 12.1. Basic document search

 Listing 12.2. Multifield document search

 Listing 12.3. Separate indexer and query client programs

 Listing 12.4. The MySolr class

 Listing 12.5. Adding and indexing documents

 Listing 12.6. Querying the index

 Listing 12.7. Deleting items from the index

 Listing 12.8. Using FTSearch to build an indexer

 Listing 12.9. Querying the index

 Listing 12.10. A simple search-enabled class using acts_as_ferret

 Listing 12.11. A model that’s indexed with Ultrasphinx

 Listing 12.12. Executing a full-text search with Ultrasphinx

 Listing 12.13. Searching for “ruby” using Yahoo!’s API

 Listing 12.14. Scraping Google for results for “ruby”

 Chapter 13. Document processing and reporting

 Listing 13.1. Currency converter

 Listing 13.2. File output for currency converter

 Listing 13.3. Rope Configuration (config/environment.rb)

 Listing 13.4. Sales Report (lib/reports/daily_sales.rb)

 Listing 13.5. Sales Report Controller (lib/controllers/sales.rb)

 Listing 13.6. Sales Report, modified for AR (lib/reports/daily_sales.rb)

 Listing 13.7. Transaction report, legacy data file

 Listing 13.8. Transaction report, CSV database dump

 Listing 13.9. Transaction report analysis script

 Listing 13.10. Purchase Notes PDF renderer and formatter

 Listing 13.11. Custom row rendering report

Preface

 Between us, we speak a lot about Ruby at conferences and to user groups, and it’s inevitable that at some point, whether after
 a talk (if we’ve given one) or when we’re just hacking on something, someone will approach with a problem along the lines
 of, “I know Ruby, but I really don’t know how to work with XML very well.” “I know Ruby, but I can’t really figure out how
 to get it to talk to our web service.” “I know Ruby, but I’m having a problem getting it to integrate with our single-sign-on
 system.” We welcome these questions and answer them gladly, because at least we know people are trying to use Ruby in the
 real world. But these questions also expose an information trend that this book aims to curb.

 Many Rubyists have been worried for a while that because Ruby found a niche on the web with Ruby on Rails, this would become
 its only niche. Don’t let us mince words here: Rails is a fantastic framework, but it certainly doesn’t represent everything that
 Ruby can do. When we were given the chance to write this book, we were very excited about the opportunity to share our experience
 working with Ruby in environments outside (or at least on the edge of) the web. It’s a wide area to cover, but it’s one that
 a lot of people are working in and making progress in; at the same time, only limited information about it is generally available.

 We’ve been using Ruby for a while now. It’s been a long, wild road that we’ve driven down! Sometimes we’ve skidded off the
 side, sometimes we’ve dangerously strayed into other lanes, but we’ve driven forward—occasionally blazing new paths and at
 other times following the tracks of those before us. We’ve used Ruby in a lot of exotic places, and we couldn’t have done
 it without the help of a lot of people.

 Now it’s our turn to pay it forward and to share what we have learned. This book has gone through many incarnations, authors,
 Rails versions, and revisions, but finally you hold in your hands the culmination of approximately 20 years of combined Ruby
 experience, 2 years of writing and revising (we Rubyists tend to be busy, slow people), and innumerable conversations. Enjoy.

Acknowledgments

 We would like to offer our deepest thanks to Manning Publications and their team: Michael Stephens, Nermina Miller, Megan
 Yockey, our copy editors, proofreaders, production team, and everyone else who had a hand in making this project happen. We
 know it’s been a long road, and we deeply appreciate your bearing with us.

 We’d also like to thank our contributors who collaborated with us on six chapters: Yehuda Katz, chapters 8 and 10; David Black, chapter 9; Gregory Brown, chapter 13; Peter Cooper, chapter 12; and Luke Melia, chapter 11. Their contributions have been invaluable.

 The reviewers who took time out of their busy schedules to read the manuscript in its many iterations deserve special recognition.
 They are Pete McBreen, David Black, Greg Donald, Mike Stok, Phillip Hallstrom, Jason Rogers, Bill Fly, Doug Warren, Jeff Cunningham,
 Pete Pavlovich, Deepak Vohra, Patrick Dennis, Christopher Haupt, Robert McGovern, Scott Shaw, Mark Ryall, Sheldon Kotyk, Max
 Bolingbroke, Marco Ughetti, Tom Werner, Rick Evans, Chukwuemeka Nwankwo, and Bob Hutchinson.

 We would thank our technical editor, Yossef Mendelssohn, except that he’s probably too busy putting the hurt on some code
 or something. Also, for keeping us in check, Nick Sieger and Hamish Sanderson.

 Jeremy would like to thank his wife (for not killing him, even though sometimes he’s sure she wanted to during this whole
 process), his family (for not forgetting who he was, even though he rarely had time to visit), his coworkers (for not making
 fun of him for taking two years to write a book), and God (for the whole giving-him-life thing). He would also like to give
 a shout-out to his dogs, since they can’t read.

 Assaf would like to thank his wife for putting up with “Weekend plans? What weekend plans? I have some chapters to edit!”
 as well as his friends and coworkers for asking politely about the book but understanding that these things take time. Ruby,
 for bringing the fun back to programming. And the many people who wrote the libraries, tools, and blog posts that helped Ruby
 come this far. Without you, this book would not be possible.

About this Book

 Welcome to Ruby in Practice! This book is geared toward software developers who know Ruby or who are starting with Ruby and want to put their skills
 to use solving real software-development problems. We’ll walk you through a series of common software scenarios, such as authenticating
 against LDAP or parsing XML, and show you how to approach and easily solve them using Ruby.

 These solutions (and the chapters themselves) are discrete units that can be read in any order. If you’re not interested in
 the web-related chapters, feel free to skip them. If you really want to learn all about reporting, skipping past the other
 chapters shouldn’t affect your ability to understand that one. While we do suggest that you read them in order (because some
 chapters will make at least a little more sense after reading others), you don’t have to. And, fear not: if a concept is discussed
 elsewhere in the book, it is noted so that you can find it easily enough.

Who should read this book

 Ruby is gaining steam both on and off the web. This book is geared toward developers who want to explore using Ruby in environments
 that aren’t necessarily “database-backed web applications.” Experience in Ruby is assumed (and is fairly essential to get
 the maximum value from most of the discussions), but you don’t need to be an expert to get started with this book. Even beginners
 will find their place, learning from examples that range from practical solutions to development challenges.

What this book doesn’t include

 This book isn’t an introduction to the Ruby language. While it does discuss a number of language techniques, these discussions
 assume a working knowledge of Ruby. There is very little hand-holding when it comes to understanding the fundamentals of the
 code examples, so you would do well to either learn Ruby or at the least pick up a book to refer to when you come to something
 you don’t understand.

 This book also does not contain much introductory information on Rails. It is discussed in a few chapters (specifically in
 chapter 4), it’s used as an example for various techniques, and it’s often referred to in relation to web applications with Ruby, but
 this book will not teach you Ruby on Rails. Of course, it’s not essential to know Rails to enjoy this book; you can read the
 whole book blissfully unaware of what alias_method_chain is. But if you are interested in learning it, we recommend you get one of the many books on the topic, since they cover it
 better than we could in the small space we devote to it.

How this book is organized

 Ruby in Practice is composed of 13 chapters divided into 3 parts.

	
Part 1—Ruby techniques

 	
Part 2—Integration and communication with Ruby

 	
Part 3—Ruby data and document techniques: Working with some form of data is the fundamental task of any application.

Part 1 (chapters 1-3) discusses techniques that will be useful when you start applying what you learn in the rest of the book. Techniques include
 metaprogramming and DSLs, testing and BDD, scripting and automating tasks.

 Chapters 4-8 (part 2 of Ruby in Practice) are arranged in a problem/solution/ discussion format, covering topics related to systems integration and communications.
 We discuss web services, messaging systems, e-mail and IM, and so on, and we show you how to put these technologies to use
 in your Ruby applications.

 Part 3 (chapters 9-13) follows the same format, but focuses on data, presentation, and security. We discuss databases, parsing and generating XML,
 reporting, authentication, and so on. These chapters will equip you to work in a data-driven environment using Ruby as your
 primary tool.

 The appendices cover topics related to the book, but they’re not specific to any particular chapter. Appendix A is a quick treatise on getting a good Ruby environment set up on your system. Appendix B covers JRuby: how to install it, how to use Java with Ruby, and how to deploy Rails applications as WAR files. Appendix C discusses deploying Ruby web applications.

Code conventions

 All source code in the book is in a monospace font, which sets it off from the surrounding text. For most listings, the code is annotated to point out key concepts, and
 numbered bullets are sometimes used in the text to provide additional information about the code. Sometimes very long lines
 will include line-continuation markers.

 In the text, names of Ruby methods, classes, modules, and constants are also in a monospace font. Names of programs, such as ruby and java, are monospace when referring to the program executable or command-line usage; otherwise, they appear in regular type. Book and article
 titles, and technical terms on first mention, appear in italics.

Code downloads

 The complete source code for the examples in this book is available for download from the publisher’s web site at http://www.manning.com/RubyinPractice. This includes any code used in the book, with accompanying tests or spec files. A more frequently updated and forkable version
 of the code (meaning that you can clone your own version and make changes to be pushed back to our mainline version) is available
 at http://www.github.com/assaf/ruby-in-practice/.

Author online

 The purchase of Ruby in Practice includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at http://www.manning.com/RubyinPractice. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the cover illustration

 The illustration on the cover of Ruby in Practice is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond
 Street, London. The title page is missing from the collection and we have been unable to track it down to date. Each illustration
 bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front
 cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Ruby techniques

 In these first three chapters, we’ll look at techniques and tools we’ll be using throughout the remainder of the book and
 that you’ll be using throughout your Ruby career.

 We’ll cover advanced and essential language constructs, strategies (like test-and behavior-driven development), and Ruby tools
 to put these strategies to use in your applications. We’ll round out this part with a thorough introduction to Rake, a useful
 Ruby tool for transforming database schemas, bootstrapping applications, running tests, and automating nearly any other task.

Chapter 1. Ruby under the microscope

 This chapter covers

	Minimizing developer cycles

 	Loading a lot of features in a little code

 Often people, especially computer engineers, focus on the machines. They think, “By doing this, the machine will run faster.
 By doing this, the machine will run more effectively. By doing this, the machine will something something something.” They
 are focusing on machines. But in fact we need to focus on humans, on how humans care about doing programming or operating
 the application of the machines. We are the masters. They are the slaves.

 Yukihiro Matsumoto, creator of Ruby

 You’ve heard it all before, right? A new language or framework becomes the flavor du jour, and everyone starts talking about
 it. First there’s a low rumble on websites, then someone gets ahold of it and does something cool, and out comes the marketing
 speak. I’m sure you can imagine Dave from marketing barking at you about another amazing technology: “You’ll be more productive! Our synergistic approach to dynamic, domain-driven development will allow
 you to get to market quicker and get a better return on investment! Get a lower TCO and higher ROI over J2EE with our XP-driven
 Scrum model based on XML! Take apart your FOB and overhaul your BOB with our easy-to-use turnkey solution!” To some in the
 world of software development, it sounds like Ruby is all hype and buzz, but this book will show you that you can develop
 “real” software with Ruby.

 Maybe you have heard the accolades and decided to read this book to find out if Ruby is right for you. Maybe you know Ruby
 already, and you chose this book to pick up practical techniques you can take back to the workplace. Whatever your reason
 for picking up our book, we’re glad you did and we hope that we can help you learn more about using Ruby in the real world.
 But before we get down to the nuts and bolts, let’s take a step back and gain some perspective.

1.1. Why Ruby now?

 Here’s a fact that surprises many people: Ruby came to the world the same year as Java—1995. Like many other open source technologies
 (such as Linux and MySQL) it took its time to mature and get noticed. So what happened in those 10 years that turned Ruby
 from a little-known language into a hot ticket item without the help of a big-vendor marketing machine? The adoption of Ruby
 on Rails, Ruby’s premier web development framework, is the obvious answer, and it has without a doubt skyrocketed Ruby’s popularity.
 It brought on hordes of developers who use Ruby exclusively with Rails, and even more developers who came for Rails, but stayed
 for Ruby.

 Although Rails played a major role in getting Ruby into the mainstream, it still doesn’t explain why it happened only recently,
 and not earlier. One thing that can help explain Ruby’s meteoric rise is the recent rise in software complexity.

 If you work for a big company, chances are you have to deal with complex problems. Sales across different channels, multiple
 products and markets, suppliers and distributors, employees and contractors, accounting and SOX compliance, market dynamics
 and regulations, and on and on. It’s unavoidable: the problems of running any sizable business are complex. What about the
 solutions? You’re probably thinking that there are no simple solutions to complex problems, and complexity is the nature of
 any real business. But do solutions have to be unnecessarily complex?

 Given the complexity that naturally arises from these business problems, you don’t want the technology you use to solve them
 to be unnecessarily complex. The more technology you throw at the problem—web servers and databases, online and batch processing,
 messaging protocols and data formats—the more complexity you add. The only way to alleviate this complexity conundrum is to
 look for simpler solutions to existing problems, efficiently using the developer cycles you have available.

 1.1.1. Optimizing developer cycles

 There has been a growing realization that software companies are targeting these business problems (one might call it the
 “enterprise” space) by offering overly complex solutions. We can’t blame them. Complex solutions sell better. It’s easier
 to obfuscate the solution and abstract the problem or to design a solution that solves every conceivable problem (even problems that the
 client doesn’t have yet!) than to design a solid, simple solution that fits the problem domain. But as more developers realize
 that these “silver bullet” solutions create more problems than they solve, the momentum is shifting toward simpler, lightweight
 technologies.

Open Source

 Open source, with its organic development model, is able to adapt to this changing of tides better. For example, in the Java
 space, one can see a strong bias toward Spring and Hibernate as opposed to EJB. Many developers are defecting from a lot of
 spaces to Rails. Why? Those projects aren’t afraid to reevaluate their approaches to accommodate current developer attitudes,
 because these sorts of projects are developed by the developers who use them every day in their own work.

 We like to talk about large-scale systems, thousands of servers, petabytes of data, billions of requests. It’s captivating,
 the same way we could talk about horsepower and 0 to 60 acceleration times. But in real life we often face constraints of
 a different scale. Can you do it with a smaller team? Can you get it done tomorrow? Can you add these new features before
 we go into beta? Most often businesses have to optimize not for CPU cycles, but developer cycles. It’s easy to scale out by
 throwing more hardware at the problem, but, as many businesses have found out, throwing more people at the problem just makes
 the project late. That knowledge was captured years ago in Fred Brooks’ Mythical Man-Month, but our bosses just decided to prove it empirically.

 Minimizing developer cycles is probably the single most attractive feature of dynamic languages, and Ruby in particular. Simplifying
 software development has been the holy grail of the software industry. Say what you will about COBOL, it’s much better than
 writing mainframe applications in assembly language. And believe it or not, productivity was a major selling point for Java,
 in the early days when it came to replace C/C++. It’s the nature of software development that every once in a while we take
 a leap forward by changing the way we write code, to deal with the growing complexity that developed since the last major
 leap. And it’s not the sole domain of the language and its syntax. One of the biggest criticisms against J2EE is the sheer
 size of its API, and the complexity involved in writing even the simplest of programs. EJB is the poster child of developer-unfriendly
 technology.

 The true measure of a programming language’s productivity is how little code you need in order to solve a given problem. Writing
 less code, while being able to do the same thing, will make you far more productive than writing a whole lot of code without
 doing much at all. This is the reverse of how many businesses view productivity: lines of code produced. If simple lines of
 code were the metric, Perl would win every time. Just as too much code can make your application unmaintainable, so can terse,
 short code that’s “write only.” Many of Ruby’s language features contribute to creating short, sane, and maintainable code.

 1.1.2. Language features

 Ruby seems to hit the sweet spot and appeal to developers who value natural interfaces and choose to migrate away from languages
 that inherently promote complexity. But why? Why would developers move away from “proven” technologies to Ruby, which is,
 arguably, the “new kid,” regardless of its positive aspects? Primarily because Ruby is a dynamic language that works well
 for applications and scripting, that supports the object-oriented and functional programming styles, that bakes arrays and
 hash literals into the syntax, and that has just enough metaprogramming features to make building domain-specific languages
 fun and easy. Had enough marketing? Of course, this laundry list of buzzwords is not as important as what happens when you
 combine all these features together. In combination, the buzzwords and abstract concepts become a powerful tool.

 For example, consider Ruby on Rails. Rails is one incarnation in a long series of web application frameworks. Like so many
 web application frameworks before it, Rails deals with UI and remote APIs, business logic, and persistence. Unlike many web
 application frameworks before it, it does so effortlessly, without taxing the developer. In its three years of existence,
 it leapfrogged the more established frameworks to become the benchmark by which all other frameworks are judged.

 All that power comes from Ruby. The simplicity of mapping relational databases to objects without the burden of XML configuration
 results from Ruby’s combination of object-oriented and dynamic styles. The ease with which HTML and XML templates can be written
 and filters can be set up comes from functional programming. Magic features like dynamic finders and friendly URL routing
 are all forms of metaprogramming. The little configuration Rails needs is handled effortlessly using a set of domain-specific
 languages. It’s not that Rails (or really Ruby) is doing anything new; the attractiveness comes from how it does things. Besides being a successful framework on its own, Rails showed the world how to use Ruby’s combination of
 language features to create applications that, quite frankly, rock. Dynamic features like method_missing and closures go beyond conceptual curiosity and help you deliver.

 So, why is Ruby popular now? This popularity can, for the most part, be traced to developers growing weary of complex, taxing
 development tools and to the emergence of Rails as a definite, tangible project that shows how Ruby can be used to create
 production quality software that’s still developer friendly. Once you start working with Ruby, you’ll probably realize this
 too. It takes about the same amount of effort to work with flat files, produce PDFs, make SOAP requests, and send messages
 using WebSphere MQ as it does to map objects to databases, send email, or parse an XML file. Wrap that into a nice, natural
 syntax, and you have a potent tool for software development.

 Let’s jump right into some Ruby code.

1.2. Ruby by example

 We think the best way to illustrate Ruby’s capabilities and features is by example, and what better way than by diving into
 some code? Let’s take a fairly typical situation: you need to pull data from a database and create graphs with it. Perhaps you need to trace the sales performance of a range of
 products across all of your sales locations. Can we keep it simple?

 First, we’ll need to install three libraries: Active Record (an object-relational mapper for databases), Scruffy (a graphing
 solution for Ruby), and RMagick (ImageMagick bindings for Ruby, required by Scruffy). Let’s do that using the RubyGems utility:

 gem install active_record
gem install rmagick
gem install scruffy

 Assuming you have all the system prerequisites for these packages (for example, ImageMagick for RMagick to bind to), you should
 now have all you need.

Tip

 RMagick can be a beast to set up. We suggest checking the project’s documentation, the mailing list, and your favorite search
 engine if you have problems.

Now, let’s set up our database. Figure 1.1 shows our schema diagram for the database.

 Figure 1.1. For our graph, we will build a simple domain model: products will have purchases, which belong to the stores where they happened.

 [image:]

 You can use figure 1.1 as a model to create the tables (if you prefer to use some sort of GUI tool), or you can use the SQL in listing 1.1.

 Listing 1.1. SQL for graph example database

 CREATE DATABASE `paper`;

CREATE TABLE `products` (
 `id` int NOT NULL auto_increment,
 `name` text,
 PRIMARY KEY (`id`)
);

CREATE TABLE `purchases` (
 `id` int NOT NULL auto_increment,
 `product_id` int default NULL,
 `store_id` int default NULL,
 PRIMARY KEY (`id`)
);

CREATE TABLE `stores` (
 `id` int NOT NULL auto_increment,
 `location` text,
 PRIMARY KEY (`id`)
);

 Now, let’s set up ActiveRecord to work with the database. ActiveRecord is typically used inside of a Rails application, and
 because we’re not using it in that environment, it takes a few more lines of configuration. See our configuration and implementation code in listing 1.2.

 Listing 1.2. Setting up our database with ActiveRecord

 [image:]

 As you can see, it doesn’t take a lot of code to get a full object-relationally mapped database connection. First, we import
 the RubyGems library [image:], so we can then import ActiveRecord. Next, we establish a database connection with ActiveRecord [image:]. Normally this configuration data would live in a database configuration file in a Rails application (such as database.yml), but for this example we chose to run outside Rails, so we’ve used establish_connection directly. Next, we create ActiveRecord classes and associations to map our database [image:]. Finally, we execute a query [image:] and output its results using Pretty Printing (pp) [image:].

 Just fill in some testing data (or download the script from the book’s source code to generate some for you), and run the
 script. You should see something like the following output:

 [#<Product:0x639e30 @attributes={"name"=>"Envelopes", "id"=>"1"}>,
 #<Product:0x639e08 @attributes={"name"=>"Paper", "id"=>"2"}>,
 #<Product:0x639c00 @attributes={"name"=>"Folders", "id"=>"3"}>,
 #<Product:0x639bb0 @attributes={"name"=>"Cardstock", "id"=>"4"}>]

 Our database is set up and our query works, so let’s move on to generating a graph from the data. First, remove those last
 two lines from listing 1.2 (they’ll be superfluous by the time we’re done). Now let’s take the data we retrieved, process it, and build the graph using Scruffy. In listing 1.3, you’ll see how to do that.

 Listing 1.3. Generating a graph with Scruffy

 [image:]

 First, we create a Scruffy::Graph instance and do a little bit of setup [image:]. Next, we iterate through the products we found earlier and calculate the sales counts for each store location [image:]. Then we add a line on the graph showing the sales trends for that product across the stores [image:]. Before we render the graph, we need to add the markers to indicate which sales location we’re looking at [image:]. Finally, we render the graph to a PNG file using one of Scruffy’s built-in themes [image:].

 If you open the graph and look at it, you can see that it is polished (ours looks like figure 1.2).

 Figure 1.2. Our finished graph: in about 40 lines of code, we pulled data from the database, processed it, and graphed it in a rather
 attractive fashion.

 [image:]

 Not bad for 40 lines of code, including whitespace, comments, and more verbose than required constructs. Sure, this example
 isn’t representative of every situation—you can’t develop a full CRM solution in Ruby with 40 lines of code—but it speaks
 volumes about the expressiveness of the language and the power of its toolkit.

 In the next section and subsequent chapters, we’ll look at a lot of the concepts that power this example, so you can start
 building applications and tools that take full advantage of Ruby’s features.

1.3. Facets of Ruby

 Now that we’ve discussed the “why” of Ruby, let’s look at the “how.” One of the goals of this book is to make you into a truly
 effective Ruby developer; we want you to be able to use Ruby to reframe problems and craft solutions. In this section, we’ll
 discuss Ruby concepts and unique “Rubyisms” that will help you do this and that will power the examples and libraries you’ll
 see throughout the rest of the book. We intend that you’ll come away with a grasp of these advanced concepts and know how
 to craft code that is readable, expressive, and “good” (by whatever subjective method you use to measure that). If we’re successful,
 you’ll be able to use Ruby to do your job more effectively and develop more maintainable applications.

 But what do we mean when we talk about reframing problems in Ruby? Every programming language has its own set of idioms and
 best practices. Once you’re comfortable with the syntax and know your way around the libraries, you start to explore that
 which makes the language unique. You explore the character of the language, if you will: the way it promotes a certain style
 of programming and rewards you for following it. If you work with the language, it will work for you.

 Object-oriented languages, for example, ask you to encapsulate behavior and data into objects, and they reward you for that
 in reuse. If you’re coming from Java, you know the value of using JavaBeans and the standard collections library, of throwing
 and catching exceptions, and so on. Today we take those for granted, but in the early days of Java development, many developers
 would use Java as if it were C or Visual Basic. They wrote code that didn’t follow Java idioms, which made it harder to maintain
 and use.

 Like Java, Ruby has its own set of idioms. For example, in Ruby you often use blocks to keep your code simple and readable. You can write methods that extend classes with new functionality (metaprogramming).
 You enrich classes with common behavior by mixing in modules, fondly known as mixins. You can use blocks to abstract loops and even extend methods and reduce code duplication.

 Let’s say you were writing a script to interface with an old legacy server. It accepts TCP connections and operates on simple
 commands like LOGIN, GET, DELETE, and so on. Each time you start a session with the server, you need the same setup and teardown, but you want to do different
 things during the socket’s connection each time. You could write a number of methods for each sequence of events, duplicating
 the setup and teardown code in each one, or you could use a block. Listing 1.4 shows a simple implementation of this script.

 Listing 1.4. Using blocks to reduce code duplication

 [image:]

 First, we create a method to execute our setup and teardown, with a yield statement inside [image:]. That yield statement tells Ruby to execute the block that is fed to the method as a parameter. Next, we create a simple method to send
 the LOGIN command to our server [image:]. Note that a block is fed to this method as a parameter. The sock parameter is the socket from our setup method (remote_session) that is given to the block to use. We do the same for the login method [image:], but this time we send the login and do something with the returned data [image:]. Notice the code duplication we’ve eliminated by putting all of our setup and teardown into a separate method; this is just
 one of the many facets of Ruby that make development with it that much cleaner and easier.

 Ruby is a dynamic language, and as you get to explore that facet of Ruby, known as duck typing, you’ll notice that you don’t need to use interfaces and abstract classes as often. The way Ruby allows you to extend objects
 and use constructors relieves you from juggling factories. Iteration is often done with blocks and functions, whereas in nonfunctional
 languages you tend to use for loops and define anonymous classes.

OEBPS/circle-2.jpg

OEBPS/circle-3.jpg

OEBPS/008fig01.jpg

OEBPS/circle-1.jpg

OEBPS/m.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg

OEBPS/infi.jpg

OEBPS/009fig01_alt.jpg

OEBPS/circle-4.jpg

OEBPS/circle-5.jpg

OEBPS/cover.jpg

OEBPS/011fig01.jpg

OEBPS/01fig02.jpg

