

 [image: cover]

 Spring Integration in Action

 Mark Fisher, Jonas Partner, Marius Bogoevici, Iwein Fuld

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	[image:]
 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Copyeditor: Benjamin Berg
Technical proofreaders: Neale Upstone, Doug Warren
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781935182436

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About This Book

 Author Online

 About the Authors

 About the Cover Illustration

 1. Background

 Chapter 1. Introduction to Spring Integration

 Chapter 2. Enterprise integration fundamentals

 2. Messaging

 Chapter 3. Messages and channels

 Chapter 4. Message Endpoints

 Chapter 5. Getting down to business

 Chapter 6. Go beyond sequential processing: routing and filtering

 Chapter 7. Splitting and aggregating messages

 3. Integrating systems

 Chapter 8. Handling messages with XML payloads

 Chapter 9. Spring Integration and the Java Message Service

 Chapter 10. Email-based integration

 Chapter 11. Filesystem integration

 Chapter 12. Spring Integration and web services

 Chapter 13. Chatting and tweeting

 4. Advanced topics

 Chapter 14. Monitoring and management

 Chapter 15. Managing scheduling and concurrency

 Chapter 16. Batch applications and enterprise integration

 Chapter 17. Scaling messaging applications with OSGi

 Chapter 18. Testing

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About This Book

 Author Online

 About the Authors

 About the Cover Illustration

 1. Background

 Chapter 1. Introduction to Spring Integration

 1.1. Spring Integration’s architecture

 1.2. Spring Integration’s support for enterprise integration patterns

 1.2.1. Messages

 1.2.2. Message Channels

 1.2.3. Message endpoints

 1.3. Enterprise integration patterns meet Inversion of Control

 1.3.1. Dependency injection

 1.3.2. Method invocation

 1.4. Say hello to Spring Integration

 1.5. Summary

 Chapter 2. Enterprise integration fundamentals

 2.1. Loose coupling and event-driven architecture

 2.1.1. Why should you care about loose coupling?

 2.1.2. Type-level coupling

 2.1.3. Loosening type-level coupling with dependency injection

 2.1.4. System-level coupling

 2.1.5. Event-driven architecture

 2.2. Synchronous and asynchronous communication

 2.2.1. What’s the difference?

 2.2.2. Where does Spring Integration fit in?

 2.3. Comparing enterprise integration styles

 2.3.1. Integrating applications by transferring files

 2.3.2. Interacting through a shared database

 2.3.3. Exposing a remote API through Remote Procedure Calls

 2.3.4. Exchanging messages

 2.4. Summary

 2. Messaging

 Chapter 3. Messages and channels

 3.1. Introducing Spring Integration messages

 3.1.1. What’s in a message?

 3.1.2. How it’s done in Spring Integration

 3.2. Introducing Spring Integration channels

 3.2.1. Using channels to move messages

 3.2.2. I’ll let you know when I’ve got something!

 3.2.3. Do you have any messages for me?

 3.2.4. The right channel for the job

 3.2.5. A channel selection example

 3.3. Channel collaborators

 3.3.1. MessageDispatcher

 3.3.2. ChannelInterceptor

 3.4. Summary

 Chapter 4. Message Endpoints

 4.1. What can you expect of an endpoint?

 4.1.1. To poll or not to poll?

 4.1.2. Inbound endpoints

 4.1.3. Outbound endpoints

 4.1.4. Unidirectional and bidirectional endpoints

 4.2. Transaction boundaries around endpoints

 4.2.1. Why sharing isn’t always a good thing

 4.2.2. What are transactions, and can we get by without them?

 4.3. Under the hood

 4.3.1. Endpoint parsing

 4.3.2. Endpoint instantiation

 4.4. Summary

 Chapter 5. Getting down to business

 5.1. Domain-driven transformation

 5.1.1. Marshalling flight information

 5.1.2. Using the simplest possible data representation

 5.1.3. Wiring the components together

 5.1.4. Testing the transformer

 5.1.5. Content enricher

 5.1.6. Header enricher

 5.2. Message-driven services

 5.2.1. The Service Activator pattern

 5.2.2. The Return Address pattern

 5.3. Message publishing interceptors

 5.4. Domain-driven Messaging Gateways

 5.5. Chaining endpoints

 5.6. Summary

 Chapter 6. Go beyond sequential processing: routing and filtering

 6.1. Do you want to get this message?

 6.1.1. Filtering out messages

 6.1.2. Using filters for selective processing

 6.2. Whose message is this, anyway?

 6.2.1. Configuring routers

 6.2.2. Routers provided by the framework

 6.2.3. Routers with multiple destinations

 6.3. Under the hood

 6.3.1. The message filter API

 6.3.2. The message router API

 6.4. Summary

 Chapter 7. Splitting and aggregating messages

 7.1. Introducing correlation

 7.1.1. A real-life example

 7.1.2. Correlating messages

 7.2. Splitting, aggregating, and resequencing

 7.2.1. The art of dividing: the splitter

 7.2.2. How to get the big picture: the aggregator

 7.2.3. Doing things in the right order: the resequencer

 7.3. Useful patterns

 7.3.1. Grouping messages based on timing

 7.3.2. Scatter-gather

 7.4. Under the hood

 7.4.1. Extension points of the CorrelatingMessageHandler

 7.4.2. How do Resequencer and Aggregator do it?

 7.5. Summary

 3. Integrating systems

 Chapter 8. Handling messages with XML payloads

 8.1. XML messaging

 8.1.1. Marshalling LegQuoteCommand into XML

 8.1.2. Enriching the leg quote using XSLT

 8.1.3. XPath support

 8.1.4. Splitting hotel, car rental, and flight quotes

 8.1.5. Routing messages based on their XML payloads

 8.1.6. Validating XML messages

 8.2. Under the hood

 8.2.1. Supported payload types and return type matching

 8.3. Summary

 Chapter 9. Spring Integration and the Java Message Service

 9.1. The relationship between Spring Integration and JMS

 9.1.1. Mapping between JMS and Spring Integration messages

 9.1.2. Comparing JMS destinations and Spring Integration message channels

 9.2. JMS support in the Spring Framework

 9.3. Asynchronous JMS message reception with Spring

 9.3.1. Why go asynchronous?

 9.3.2. Spring’s MessageListener container

 9.3.3. Message-driven POJOs with Spring

 9.4. Sending JMS messages from a Spring Integration application

 9.5. Receiving JMS messages in a Spring Integration application

 9.6. Request-reply messaging

 9.6.1. The outbound gateway

 9.6.2. The inbound gateway

 9.7. Messaging between multiple Spring Integration runtimes

 9.8. Managing transactions with JMS channel adapters and gateways

 9.8.1. JMS transaction basics

 9.8.2. A note about distributed transactions

 9.9. Summary

 Chapter 10. Email-based integration

 10.1. Sending email

 10.1.1. The outbound channel adapter

 10.1.2. Advanced configuration options

 10.1.3. Transforming outbound messages

 10.2. Receiving email

 10.2.1. Polling for emails

 10.2.2. Event-driven email reception

 10.2.3. Transforming inbound messages

 10.3. Summary

 Chapter 11. Filesystem integration

 11.1. Can you be friends with the filesystem?

 11.1.1. A file-based collaborative trip diary editor

 11.2. Writing files

 11.2.1. Configuring the file-writing endpoint

 11.2.2. Writing increments from the collaborative editor

 11.3. Reading files

 11.3.1. A File in Java isn’t a file on your disk

 11.3.2. Configuring the file-reading endpoint

 11.3.3. From the example: picking up incremental updates

 11.4. Handling file-based messages

 11.4.1. Transforming files into objects

 11.4.2. Common scenarios when dealing with files

 11.4.3. Configuring file transformers

 11.4.4. Applying incoming changes to the collaborative editor

 11.5. Under the hood

 11.5.1. FileReadingMessageSource

 11.6. Summary

 Chapter 12. Spring Integration and web services

 12.1. XML web services with Spring WS

 12.1.1. Exposing a Spring WS–based inbound gateway

 12.1.2. Calling a web service with the outbound gateway

 12.1.3. Marshalling support

 12.2. Simple HTTP endpoints

 12.2.1. Processing HTTP inbound requests

 12.2.2. Inbound-only messages using inbound-channel-adapter

 12.2.3. Outbound HTTP requests

 12.2.4. Outbound channel adapter

 12.3. Summary

 Chapter 13. Chatting and tweeting

 13.1. XMPP

 13.1.1. Sending XMPP messages

 13.1.2. Receiving XMPP messages

 13.1.3. Sending and receiving presence status updates

 13.2. Twitter

 13.2.1. Receiving messages from a Twitter search

 13.2.2. OAuth configuration for the Twitter template

 13.2.3. Receiving messages from your Twitter timeline

 13.2.4. Sending messages to update your Twitter status

 13.2.5. Receiving messages from Twitter retweets, replies, and mentions

 13.2.6. Sending and receiving direct messages via Twitter

 13.3. Future directions

 13.4. Summary

 4. Advanced topics

 Chapter 14. Monitoring and management

 14.1. Message history

 14.2. Wire Tap

 14.3. JMX support in Spring Integration

 14.3.1. Monitoring channels and endpoints with JMX

 14.3.2. Integration using JMX adapters

 14.4. Control Bus

 14.4.1. Spring’s support for management annotations

 14.4.2. Using SpEL for control messages

 14.4.3. Using Groovy for control messages

 14.5. Under the hood

 14.6. Summary

 Chapter 15. Managing scheduling and concurrency

 15.1. Controlling timed events

 15.1.1. Pollers and their configuration

 15.1.2. Controlling the polling frequency

 15.1.3. Scheduling jobs at precise times

 15.1.4. Advanced configuration options

 15.1.5. Publishing messages according to a schedule

 15.2. Managing concurrency

 15.2.1. Breaking down the thread

 15.2.2. Configuring the infrastructure

 15.3. Under the hood

 15.3.1. The TaskExecutor API

 15.3.2. The TaskScheduler API

 15.4. Summary

 Chapter 16. Batch applications and enterprise integration

 16.1. Introducing batch jobs

 16.1.1. Online or batch, that’s the question

 16.1.2. Batch processing: what’s it good for?

 16.1.3. Batch by example

 16.2. Introducing Spring Batch

 16.2.1. A batch job in five minutes

 16.2.2. Getting the job done

 16.3. Integrating Spring Batch and Spring Integration

 16.3.1. Launching batch jobs through messages

 16.3.2. Providing feedback with informational messages

 16.3.3. Externalizing batch process execution

 16.4. Summary

 Chapter 17. Scaling messaging applications with OSGi

 17.1. The OSGi module system

 17.1.1. The bundle lifecycle in an OSGi environment

 17.2. Accessing the Service Registry through Gemini Blueprint

 17.3. Messaging between bundles

 17.3.1. Reasons to combine OSGi with messaging

 17.3.2. Publish-subscribe messaging between bundles

 17.3.3. Point-to-point messaging and sharing the load

 17.3.4. Using gateways and service activators to avoid Spring Integration dependencies

 17.4. Summary

 Chapter 18. Testing

 18.1. Matching messages with the Spring Integration testing framework

 18.1.1. Unwrapping payloads

 18.1.2. Expectations on headers

 18.2. Mocking services out of integration tests

 18.3. Testing an asynchronous system

 18.3.1. Can’t we wait for the message to come out the other end?

 18.3.2. Avoiding the wicked ways of debugging

 18.3.3. Injecting latches into endpoints

 18.3.4. Structuring the configuration to facilitate testing

 18.3.5. How do I prove my code thread safe?

 18.4. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Integration is currently a hot topic. We live in an increasingly asynchronous world in which we need to interact with a bewildering
 range of systems, so our software applications need to support a variety of conversation patterns with disparate collaborators.

 Software that helps developers tackle this complexity is crucial. In the 2000s, Struts, Spring, and Hibernate replaced in-house
 web MVC, configuration, and persistence code with superior, battle-tested, and well-documented open source code. Similarly
 today, integration is core to so many applications that we need quality, generic infrastructure in place of ad hoc solutions.

 Spring Integration is a great choice to address these infrastructure requirements. Too many open source projects reinvent
 every wheel in sight. Spring Integration does not, and is stronger for it. It explicitly builds on established best practices
 and existing software. Spring Integration was inspired by one of the classic books on enterprise software: Hohpe and Woolf’s
 Enterprise Integration Patterns (Addison-Wesley, 2003). The developers chose to follow the vocabulary that book introduced, meaning that their code benefits
 from the thinking and experience that’s evident in the book and is easy for developers familiar with those patterns to adopt.
 Spring Integration also builds on the powerful and proven Spring Framework. It extends Spring’s POJO programming model, making
 it a natural choice for the millions of developers already familiar with Spring. If you’re a Spring developer, learning Spring
 Integration won’t feel so much like learning a new framework as like picking up a part of the Spring Framework core that you
 haven’t yet applied. You’ll be able to focus on mastering architectural concepts without wrestling with an unfamiliar API.
 Spring Integration also applies proven Spring values such as portability, with the result that it can be used in a wide range
 of environments.

 Spring Integration is set to become an increasingly important project within the Spring Portfolio. I believe this book will
 become the definitive work on it.

 The authors are uniquely qualified to write about the topic. Mark Fisher is the creator and lead of Spring Integration, and
 all the authors are contributors. Their daily involvement in the open source project has ensured that the book is up to date
 with Spring Integration 2.0 features and best practices. Mark, Marius, Iwein, and Jonas have a wealth of worldwide consulting
 experience helping customers solve integration problems. This extensive and current hands-on experience underpins their writing
 and offers great value to the reader.

 The authors do an excellent job of putting Spring Integration in context. Rather than merely explain how to use Spring Integration,
 they discuss common business problems, the trade-offs between potential solutions, and how Spring Integration can be applied
 to implement them. The first few chapters explain how Spring Integration grows naturally out of the Spring Framework.

 The examples are well chosen: easy to grasp, yet realistic enough to communicate real-world problems. A good balance between
 code examples and explanation develops the reader’s understanding at a steady pace.

 There are many highlights, but I particularly like chapter 18, “Testing.” In this, as in many other chapters, you’ll find a wealth of good advice based on experience, which will save
 you a lot of time debugging. What kinds of tests will give you the most bang for your buck? How do you test your configuration?
 How do you figure out what’s going on with an endpoint that has no output? You’ll find thoughtful answers to these and many
 other questions.

 Finally, Spring Integration in Action is well written. Too often technical books are clumsily and sloppily worded, making them hard work to plow through and potentially
 confusing. This book is an exception, being enjoyable to read and always clear and to the point. Excellent, uncluttered diagrams
 elucidate many key points.

 I hope you enjoy reading Spring Integration in Action. I did.

 ROD JOHNSON
FOUNDER OF THE SPRING FRAMEWORK

Preface

 As I write this in August 2012, I find it difficult to believe that nearly five years have passed since we officially launched
 the Spring Integration project. I guess, as they say, time flies when you’re having fun, and I would add that it flies even
 faster (especially the weekends) when you’re writing a book. For those who have been anxiously awaiting a print copy since
 this book project was first announced in Manning’s Early Access Program, I hope you find it worth the wait.

 One thing is certain: the authors are true subject matter experts. Each of my coauthors has contributed to the framework,
 and many of the chapters are written by the one person most intimately familiar with the topic at hand. In a few cases, new
 features were even added to the framework based on ideas that originated in the book. The degree of expertise is most apparent,
 however, in the frequent discussions about design decisions and the trade-offs involved. In those sections, I believe the
 reader will fully recognize that the authors’ perspectives have been shaped by real-world experience building enterprise integration
 solutions.

 The first prototype that eventually led to the official launching of the Spring Integration project was a result of two motivations.
 First, I had been deeply inspired by the indispensable Enterprise Integration Patterns written by Gregor Hohpe and Bobby Woolf (Addison-Wesley, 2003). Second, I quite literally had a life-changing experience
 with the Spring Framework. I was determined to bring those two forces together in a way that would let them both shine.

 Regarding the EIP book, I probably have one of the most well-worn copies, and it’s always within easy reach at my desk. To
 this day I refer to it regularly, even for something as mundane as settling upon the right terminology to use in code documentation.
 By the time I first read that book, I had experience with several integration frameworks and containers, and yet I felt that
 none truly captured the essence of those patterns. I wanted to define an API that would be immediately accessible to anyone
 familiar with the patterns, where not only the functionality but the vocabulary could be easily recognized.

 As for my life-changing experience with the Spring Framework, in late 2005, a fortunate series of events led to my joining
 the core team. The company behind Spring, Interface21, had recently been established, and as an employee I quickly went from
 being just a Spring fanatic to being a full-time consultant, trainer, and contributor.

 In those early days, I spent a majority of my time on the road. I worked on site with dozens of organizations, trained hundreds
 of engineers, and spoke at numerous user groups and conferences. Throughout those interactions, I noticed that developers
 became genuinely excited about the Spring Framework once they experienced the proverbial “aha!” moment. Soon, my primary goal
 was to elicit a similar reaction from users of a new extension to the Spring programming model that would focus on the enterprise
 integration patterns. That pretty much sums up why I started the project.

 Much of the groundwork for Spring Integration was coded on the go—in planes, trains, taxis, hotel lobbies, and countless cafes.
 Throughout my travels, I demonstrated the early prototypes, and I processed vast amounts of feedback. My colleagues at Interface21
 provided their share of honest feedback, including Rod Johnson, founder of the Spring Framework, who took an early interest
 in the project.

 Interface21 later evolved into SpringSource which was in turn acquired by VMware. Today, I continue to lead the integration
 efforts within the Spring team at VMware. Now it’s much more common for me to write code at a desk, and in fact the majority
 of new Spring Integration code is currently written by others on the team. I’ve also been pleased to see the number of community
 contributors grow, a trend that should lead to many extensions to the core.

 Ironically, as the founder of the project, I have a particularly difficult time devising its “elevator pitch.” I suppose it’s
 always a challenge to avoid verbosity when discussing something that you live and breathe day after day. That said, based
 on the background I provided here, such a pitch might go something like this:

 Spring Integration provides support for the enterprise integration patterns while building upon the Spring programming model.
 It shares the Spring Framework’s goal of simplifying the developer role as much as possible. This goal is applicable even,
 and perhaps especially, when the developer is designing and implementing applications that aren’t simple at all. It’s a fact
 of life that modern applications are increasingly complex since they tend to require event-driven services interacting with
 data in near-real time across a wide variety of distributed systems. Those are the problems that the enterprise integration
 patterns address, and applying the Spring programming model to those patterns exposes their full power through a simplified
 developer experience.

 Indeed, Spring Integration enables developers to implement those distributed, event-driven applications. It does so in a way
 that keeps the enterprise integration patterns in clear focus and maintains the associated vocabulary as accurately as possible.
 Above all, I hope you find that it does so in a way that lets the developer enjoy the journey and that this book gets you started on the right path.

 MARK FISHER

Acknowledgments

 We would like to thank everyone at Manning who has been involved with this project. Writing the book became a journey in itself,
 and we had many excellent guides along the way. Mike Stephens, it all began with your patient assistance as we took the first
 steps and planned our roadmap. A number of editors and reviewers helped us navigate the terrain, but we would especially like
 to thank Cynthia Kane for rescuing us from writer’s block on so many occasions. The last mile felt like a marathon all by
 itself, but the production team kept us on track. Katie Tennant, we finally crossed the finish line thanks to you! We are
 likely missing several names, including those behind the scenes with whom we had no direct interaction, but in addition to
 those mentioned above, we sincerely thank Marjan Bace, Benjamin Berg, Nick Chase, Kimberly Dickinson, Gabriel Dobrescu, Candace
 Gillhoolley, Dottie Marsico, Mary Piergies, Christina Rudloff, Maureen Spencer, Elle Suzuki, Karen Tegtmeyer, Janet Vail,
 and Megan Yockey.

 We also owe a special thanks to the following reviewers who read the manuscript at different stages in its development and
 provided invaluable feedback: Srini Penchikala, Bruce Snyder, Mick Knutson, Fabrice Dewasmes, Gordon Dickens, Michał Minicki,
 Dmitry Sklyut, Arnaud Cogoluègnes, Deepak Vohra, John Guthrie, Al Scherer, Rick Wagner, Jettro Coenradie, Pratik Patel, Holger
 Hoffstätte, Joshua White, Cos Difazio, Chris Wilkes, Roberto Rojas, Mykel Alvis, Vladimir Ritz Bossicard, Peter Pavlovich,
 Pierre-Antoine Grégoire, and Oliver Zeigermann.

 We received quite a bit of constructive feedback from Manning Early Access Program subscribers via the forum, including Karen
 Christenson, Marten Deinum, Brian Dussault, Stephen Fenech, Ryan Fong, Michael Girard, Mark Spritzler, Mike Sweeney, Lynn
 Walton, and several others. We apologize if we have inadvertently overlooked any of your suggestions.

 To our technical proofreaders, Neale Upstone and Doug Warren: your careful attention to the configuration and code has been
 greatly appreciated. We threw quite a few curveballs by updating examples as the framework evolved from version 1.0 to 2.0.
 Having such experienced technical reviewers gave us the confidence to make the necessary changes, and the reader will surely
 appreciate that as much as we do.

 Last but certainly not least, we would like to thank those who provided the foundations for the Spring Integration framework
 itself. Gregor Hohpe and Bobby Woolf: Enterprise Integration Patterns not only sparked the original inspiration, but it has essentially served and continues to serve as our specification. Arjen
 Poutsma: not only is your craftsmanship evident across Spring’s REST support, Spring Web Services, and Spring OXM—all of which
 Spring Integration builds upon—but your direct feedback in the early days of the project influenced some of the most important
 decisions in defining the core API itself. Juergen Hoeller and the rest of the core Spring team: the Spring Framework provides
 much of the underlying functionality that makes Spring Integration possible but, even more importantly, it provides the idioms
 and principles that keep Spring Integration moving in the right direction. Rod Johnson: we are truly honored that you wrote
 this book’s foreword; there could be no better way to start our story here than with the words of the one who started Spring
 itself.

Mark

 I would like to thank my wife Janelle for helping me in so many ways, and for tolerating my absence—both physical and mental—on
 so many occasions since this book project began. To my daughter Evelyn, the image of uninterrupted weekends with you has been
 the inspiration driving me to finish. To my parents, I am grateful for a lifetime of encouragement. To the entire Spring team,
 past and present, thank you for maintaining such a high standard of quality with an even higher level of passion. I am fortunate
 to work with the current Spring Integration team—Oleg, Gary, and Gunnar—who make the framework more amazing every day. To
 my coauthors, I must say it’s incredible that four people with so many other responsibilities managed to complete a book,
 even if it took just a little bit longer than expected.

Jonas

 I would like to thank friends and family for their ongoing support and their understanding when weekends and evenings have
 been taken up. Also thanks to Dr. Bob Coates for always having time and enthusiasm to share while I was an undergraduate.

Marius

 I would like to thank Patricia, my wife and closest friend, for her support and patience during this long project, and for
 being there to discuss chapter plans and ill-attempted first drafts. Thanks also go to these individuals: to my coauthors,
 for the great experience of working together; to all my former and current colleagues, especially from the SpringSource and
 JBoss teams for helping me understand the real meaning of enterprise software; to my former teachers at the “Politehnica”
 University of Timisoara, for laying down the foundation of my career; to all my friends and family, for their continuous encouragements;
 to my parents and grandparents, for being excellent examples and instilling in me the love of all things technical; and to
 my father, especially—since early on, he’s been the model of what science and engineering teaching should be. I dedicate my
 share of the book to him.

Iwein

 I would like to thank Marte Israël for being my wife and bearing with my staring in the distance for many evenings, and for
 reading and editing early drafts. Having a nerd for a husband is a challenge, but doubly so if he’s writing a book. I would
 like to thank my children for reminding me there is more to life than my computer. Thanks go to Wilfred Springer for inspiration
 and clever thoughts freely shared on our many commutes together, and to Nicholas Cage for his unwavering help regarding DocBook
 and other time-consuming technical obstacles.

 I also thank my team members, family, and friends for letting me write during meetings, parties, and other occasions. Finally,
 I bow my head in respect to Mark, who has pushed us through the last barrier to get this book to print. I’m really glad you
 didn’t give up.

About This Book

 At its core, Spring Integration defines an API for messaging and a corresponding data model. The abstraction provided by that
 API and model essentially serves as a lightweight messaging framework that can be used in any runtime environment from a full-blown
 application server to a simple main method within a Java class that’s executed from a command line or within an IDE.

 A messaging framework can be quite useful even in standalone applications that don’t require complex system integration. For
 example, the core enterprise integration patterns can be used to construct a pipeline of filters, transformers, and routers
 that all run within a single process. With the growing interest in asynchronous event-driven applications, that pipeline design
 might be a good match for many of your applications.

 This book recognizes the value of the core messaging patterns not only as building blocks for system integration but also
 as a set of components that can facilitate standalone message-driven applications of a much smaller scale. The first two parts
 of the book, “Background” and “Messaging,” consist of seven chapters that are relevant for either type of application. The
 third part, “Integrating systems,” includes six chapters that build upon that core knowledge while demonstrating the most
 common messaging adapters for assembling distributed applications and integrating various data and messaging systems. The
 fourth and final part of the book, “Advanced topics,” provides another five chapters covering practical concerns for those
 using the framework in real-world applications.

 Throughout this book, we hope you’ll find that the depth of content goes well beyond the practical concerns of the framework’s
 usage as it ventures into the concepts behind the patterns and the decisions to consider when applying those patterns to the
 design of your applications.

Roadmap

 Part 1: Background

	
Chapter 1 provides a high-level introduction to Spring Integration. It also walks through the quintessential Hello World example.

 	
Chapter 2 addresses the fundamentals of enterprise integration. It takes a pros-and-cons approach to such topics as tight and loose
 coupling, synchronous and asynchronous communication, and the four integration styles: filesystem, shared database, remote
 procedure calls, and messaging.

Part 2: Messaging

	
Chapter 3 offers the first jump into the Spring Integration API. It focuses only on the Message and Message Channel abstractions, since
 those two must be understood in depth before a meaningful exploration of the rest of the framework.

 	
Chapter 4 takes the next logical step by describing the generic role of Message Endpoints. Much of what follows in later chapters will
 focus on specific types of endpoints, but they share the common characteristics described here.

 	
Chapter 5 reveals how you connect the business logic within your application’s service layer to the messaging endpoints. It emphasizes
 the importance of maintaining a separation of concerns between that business logic and the integration logic.

 	
Chapter 6 demonstrates how to add conditional logic to messaging flows. The Message Filter and Message Router patterns are presented
 within the context of several real-world scenarios.

 	
Chapter 7 explains how to deal with messaging flows that require nonlinear processing. The Message Splitter, Aggregator, and Resequencer
 patterns are featured, along with lower-level patterns such as the Correlation Identifier and higher-level patterns like Scatter-Gather.

Part 3: Integrating systems

	
Chapter 8 focuses on XML. Unlike many integration frameworks, Spring Integration doesn’t require the use of XML for message structure,
 yet it’s still a popular format. This chapter introduces transformers, splitters, and routers that take advantage of XPath,
 XSLT, and Spring’s own XML marshalling (OXM) libraries.

 	
Chapter 9 is the first to deal with messaging adapters and takes the logical starting point for a Java-based framework: the Java Message
 Service (JMS). Along with a detailed discussion of mapping between the JMS and Spring Integration messaging models, this chapter
 also dives deep into the underlying Spring Framework support so that you understand exactly how the adapters work.

 	
Chapter 10 turns to email, perhaps the most widely used form of messaging in the modern world. Of course, the emphasis is on the various
 ways that enterprise applications can send and receive email as part of their automated processing.

 	
Chapter 11 gets back to the roots of integration and the role of the shared file-system. This modern perspective approaches the topic
 within the context of messaging, with file directories as endpoints connected to channels either on the reading or writing
 end of a message flow.

 	
Chapter 12 ventures into the wide world of web services. Spring Integration supports both REST- and SOAP-based services as either inbound
 or outbound endpoints. This chapter shows not only how to use these adapters but also provides guidance on choosing among
 the options.

 	
Chapter 13 wraps up the discussion of adapters with two more selections from the Spring Integration toolbox. The chapter begins with
 the XMPP adapters that enable plugging into instant messaging systems. The chapter then provides a tour of the Twitter adapters
 that can be used for updating or reading a timeline, sending or receiving direct messages, detecting mentions, or performing
 a search.

Part 4: Advanced topics

	
Chapter 14 reveals how you can monitor and manage a Spring Integration application at runtime. Relevant integration patterns such as
 Message History, Wire Tap, and Control Bus are described here along with Spring Integration’s support for Java Management
 Extensions (JMX).

 	
Chapter 15 provides a thorough discussion of task scheduling in a Spring Integration application. This is an important topic for any
 messaging flow that includes the Polling Consumer pattern. No such discussion would be complete without getting into the thorny
 details of concurrency, and this chapter doesn’t shy away. As a result, it’s also quite relevant for anyone relying upon asynchronous
 execution and parallel processing of messages.

 	
Chapter 16 shows how Spring Integration and Spring Batch can be used together. First, it provides a basic overview of batch processing
 applications in general and then a quick introduction to Spring Batch. Learning how to add messaging capabilities to batch
 applications might be useful to anyone tasked with modernizing their legacy systems.

 	
Chapter 17 presents the main principles behind the Open Services Gateway initiative (OSGi) and demonstrates how its approach to modularity
 and its service registry can be utilized in Spring Integration applications. In the process, this chapter also provides background
 information about the Eclipse Gemini Blueprint project, which is the successor to Spring Dynamic Modules.

 	
Chapter 18 covers a topic that should never be neglected in a book aimed at developers: testing. Applications that interact with distributed
 systems are notoriously difficult to test, and even relatively simpler applications that rely upon messaging present challenges
 due to concurrent processing and asynchronous execution. This chapter offers general guidance and suggests several tools that
 can facilitate the test-driven methodology in the face of such challenges.

Who should read this book?

 One of the main design goals of Spring Integration is to make enterprise application integration (EAI) accessible in a wide
 variety of use cases. Instead of a heavyweight infrastructure requiring the setup of an external integration bus and the use
 of specialized utilities and tools, Spring Integration builds on top of the Spring Framework and allows the inclusion of its
 components and concepts directly inside applications, reusing a wide array of skills and tools developers already have, like
 their knowledge of Java or Spring.

 In a similar way, this book intends to be a companion and guide to anyone who needs to incorporate integration aspects in
 their applications. EAI experts will find a hands-on overview of how the concepts with which they’re already familiar materialize
 in the design and features of the framework. Nonspecialists, developers, and architects who need to solve specific integration
 problems will find a set of useful concepts and patterns described from a pragmatic, example-driven perspective. Managers
 will better understand the challenges inherent within the solutions whose development they supervise and, at the same time,
 the opportunities that the framework offers.

 This book addresses an audience with varying degrees of familiarity with EAI, Spring, or even Spring Integration itself. Prior
 knowledge of any of these would surely help you connect the dots with greater ease, but isn’t required. The book introduces
 basic background concepts before discussing more advanced topics. Conversely, existing familiarity with any of these topics
 should detract little from the enjoyment of the book; this deep dive into technical details and best practices will provide
 a lot to take away.

Code conventions and downloads

 All source code in listings or in the text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany some of the listings, highlighting important concepts. In most
 cases, numbered bullets link to explanations that follow in the text. You can download the source code for this book from
 the publisher’s website at www.manning.com/SpringIntegrationinAction.

 Although this book project was initiated when Spring Integration was at version 1.0, we ended up making changes throughout
 to keep up with the latest major version of the framework: 2.0. In fact, our code sample repository actually uses the latest
 minor version, 2.1, which is a superset of 2.0.

 You may notice that we use different approaches in XML schema namespace prefixes across the many configuration examples in
 the book. Sometimes we prefix namespaces with just the name of the type of adapter being configured (e.g., <mail:outbound-channel-adapter>),
 and other times the prefix is further qualified with an indicator that it’s for integration (e.g., <int-http:inbound-gateway>). The latter option helps avoid conflicts with other common uses of the unqualified prefix,
 as could clearly cause confusion in the case of the prefix http:. In yet other cases, we specify the integration namespace as the base namespace of the XML file itself so that no prefix is necessary for the components defined within that schema (e.g., <channel>).
 That’s typically done when it’s the Spring Integration “core” namespace in question, and in those examples, you’ll often see
 an explicit prefix for the Spring beans namespace (e.g., <beans:bean>). We wanted to point out these differences here, so that you aren’t confused when you encounter
 them. In the real world, you’ll likely stumble upon a wide variety of prefixes, so it actually helps to be accustomed to seeing
 a reflection of that in the book examples.

 Finally, we want to clarify an approach we’ve taken to the occurrence of enterprise integration pattern names within this
 book. The first occurrence of a pattern name will typically be capitalized and/or italicized (e.g., Control Bus). Once the context is established for a given pattern, it will occur in regular text throughout the book. The pattern names
 appear so frequently in the book, we decided it was distracting to constantly use capitalization.

Author Online

 Purchase of Spring Integration in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access and subscribe to the forum, point your web browser
 to www.manning.com/SpringIntegrationinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions,
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 MARK FISHER is the founder of the Spring Integration project. Currently at VMware, he continues to lead the development of Spring Integration
 while exploring the intersection of big data and messaging. He has been a committer on a number of Spring projects, including
 the Spring Framework itself and Spring AMQP, which he cofounded. Mark speaks regularly at conferences and user groups about
 messaging, data, integration, and cloud computing.

 JONAS PARTNER is the CEO of OpenCredo, a London-based consultancy with a strong focus on open source. As part of OpenCredo, Jonas has been
 a key part of many complex high-performance messaging projects. Before cofounding OpenCredo, Jonas worked for SpringSource,
 where he began his involvement with the Spring Integration project as one of the early committers.

 MARIUS BOGOEVICI is a Senior Software Engineer with Red Hat, leading the Spring integration efforts at JBoss. He’s the lead for Snowdrop,
 a utility package for JBoss-specific extensions to Spring, and also contributes to Weld, the JSR-299/CDI reference implementation,
 and other Java EE–related developer initiatives at JBoss. Marius has more than 15 years of experience developing and architecting
 software systems. Prior to joining Red Hat, he was a Spring consultant with SpringSource and a contributor to the Spring Integration
 enterprise integration framework.

 IWEIN FULD is a consultant at Xebia where he focuses on high-quality development and coaching teams. He’s a jack-of-all-trades, but
 keeps coming back to server integration problems and algorithms. Iwein has been a committer on the Spring Integration project
 since early 2008. Apart from being an expert on TDD, concurrency, and messaging, Iwein especially enjoys building agile teams
 and lean startups.

About the Cover Illustration

 The figure on the cover of Spring Integration in Action is captioned “A man from Split, Dalmatia.” The illustration is taken from a reproduction of an album of traditional Croatian
 costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003.
 The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman
 core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book
 includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes
 and of everyday life.

 Split is an ancient port city on the Adriatic coast that is over 1700 years old. It is the second-largest city in Croatia
 and an important cultural, academic, and economic center as well as a popular tourist destination. The figure on the cover
 is wearing dark blue woolen trousers and an embroidered jacket over a white linen shirt, the typical costume for men in Dalmatia
 for hundreds of years. A red sash and red cap complete the outfit.

 Dress codes and lifestyles have changed, and the diversity by region, so rich only 200 years ago, has faded away. It is now
 hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few
 miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced
 technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Background

 This book will help you to understand and exploit Spring Integration. Part 1 of the book presents a high-level overview of Spring Integration and enterprise integration fundamentals.

 Spring Integration provides an extension of the Spring programming model to support the well-known enterprise integration
 patterns. It enables lightweight messaging within Spring-based applications and supports integration with external systems
 via declarative adapters. Those adapters provide a higher level of abstraction over Spring’s support for remoting, messaging,
 and scheduling. Spring Integration’s primary goal is to provide a simple model for building enterprise integration solutions
 while maintaining the separation of concerns that’s essential for producing maintainable, testable code.

 First, in chapter 1, we provide a high-level overview of what Spring Integration is, and show you how its lightweight intra-application messaging
 can be incorporated into Spring applications, as well as how it offers interapplication integration adapters for use with
 many external technologies.

 Then, in chapter 2, we explain enterprise integration patterns and how they can be represented and implemented by Spring Integration to add
 common useful capabilities to your Spring applications.

 Our goal is to help you leverage this powerful technology in your own projects. Throughout this book, we explain all these
 key concepts, explore important integration features, investigate the extensive configuration options available, and demonstrate
 how to put all these capabilities to work for you. Let’s get started!

Chapter 1. Introduction to Spring Integration

	

 This chapter covers

	
Spring Integration architecture

 	Support for enterprise integration patterns

 	Inversion of Control

	

We live in an event-driven world. Throughout each day, we’re continuously bombarded by phone calls, emails, and instant messages.
 As if we’re not distracted enough by all of this, we also subscribe to RSS feeds and sign up for Twitter accounts and other
 social media sites that add to the overall event noise. In fact, technological progress seems to drive a steady increase in
 the number and types of events we’re expected to handle. In today’s world of hyperconnectivity, it’s a wonder we can ever
 focus and get any real work done. What saves us from such event-driven paralysis is that we can respond to most events and
 messages at our convenience. Like a return address on an envelope, events usually carry enough information for us to know
 how and where to respond.

 Now, let’s turn our attention to software. When we design and build a software application, we strive to provide a foundation
 that accurately models the application’s domain. The domain is like a slice of reality that has particular relevance from
 the perspective of a given business. Therefore, successful software projects are accurate reflections of the real world, and
 as such, the event-driven nature plays an increasingly important role. Whereas many software applications are based on a conversational
 model between a client and a server, that paradigm doesn’t always provide an adequate reflection. Sometimes the act of making
 a request and then waiting for a reply is not only inefficient but artificial when compared with the actual business actions
 being represented.

 For example, consider an online travel booking application. When you plan a trip by booking a flight, hotel, and rental car,
 you don’t typically sit and wait at the computer for all of the trip details. You may receive a confirmation number for the
 trip itself and a high-level summary of the various reservations, but the full details will arrive later. You may receive
 an email telling you to log in and review the details. In other words, even though the application may be described as a service,
 it’s likely implemented as an event-driven system. Too many different services are involved to wrap the whole thing in a single
 synchronous action as the traditional client/server conversational model may suggest. Instead, your request is likely processed
 by a series of events, or messages, being passed across a range of participating systems. When designing software, it’s often useful to consider the events
 and messages that occur within the domain at hand. Focusing on events and messages rather than being excessively service-oriented
 may lead to a more natural way to think about the problem.

 As a result of all this, it’s increasingly common that enterprise developers must build solutions that respond to a wide variety
 of events. In many cases, these solutions are replacements for outdated client/server versions, and in other cases, they’re
 replacements for scheduled back-office processes. Sure, those nightly batch-processing systems that grab a file and process
 it shortly after midnight still exist, but it’s increasingly common to encounter requirements to refactor those systems to
 be more timely. Perhaps a new service-level agreement (SLA) establishes that files must be processed within an hour of their
 arrival, or maybe the nightly batch option is now insufficient due to 24/7 availability and globalized clientele. These are,
 after all, the motivating factors behind such hyped phrases as “near-real-time.” That phrase usually suggests that legacy
 file-drop systems need to be replaced or augmented with message-driven solutions. Waiting for the result until the next day
 is no longer a valid option. Perhaps the entry point is now a web service invocation, or an email, or even a Twitter message.
 And by the way, those legacy systems won’t be completely phased out for several years, so you need to support all of the above.
 That means you also need to be sure that the refactoring process can be done in an incremental fashion.

 Spring Integration addresses these challenges. It aims to increase productivity, simplify development, and provide a solid
 platform from which you can tackle the complexities. It offers a lightweight, noninvasive, and declarative model for constructing message-driven applications. On top of this, it includes a toolbox of commonly required integration components
 and adapters. With these tools in hand, developers can build the types of applications that literally change the way their
 companies do business.

 Spring Integration stands on the shoulders of two giants. First is the Spring Framework, a nearly ubiquitous and highly influential
 foundation for enterprise Java applications that has popularized a programming model which is powerful because of its simplicity.
 Second is the book Enterprise Integration Patterns (Hohpe and Woolf, Addison-Wesley, 2003), which has standardized the vocabulary and catalogued the patterns of common integration
 challenges. The original prototype that eventually gave birth to the Spring Integration project began with the recognition
 that these two giants could produce ground-breaking offspring.

 By the end of this chapter, you should have a good understanding of how the Spring Integration framework extends the Spring
 programming model into the realm of enterprise integration patterns. You’ll see that a natural synergy exists between that
 model and the patterns. If the patterns are what Spring Integration supports, the Spring programming model is how it supports them. Ultimately, software patterns exist to describe solutions to common problems, and frameworks are designed
 to support those solutions. Let’s begin by zooming out to see what solutions Spring Integration supports at a very high level.

1.1. Spring Integration’s architecture

 From the 10,000-foot view, Spring Integration consists of two parts. At its core, it’s a messaging framework that supports
 lightweight, event-driven interactions within an application. On top of that core, it provides an adapter-based platform that
 supports flexible integration of applications across the enterprise. These two roles are depicted in figure 1.1.

 Figure 1.1. Two areas of focus for Spring Integration: lightweight intra-application messaging and flexible interapplication integration

 [image:]

 Everything depicted in the core messaging area of the figure would exist within the scope of a single Spring application context.
 Those components would exchange messages in a lightweight manner because they’re running in the same instance of a Java Virtual
 Machine (JVM). There’s no need to worry about serialization, and unless necessary for a particular component, the message
 content doesn’t need to be represented in XML. Instead, most messages will contain plain old Java object (POJO) instances
 as their payloads.

 The application integration area is different. There, adapters are used to map the content from outbound messages into the
 format that some external system expects to receive and to map inbound content from those external systems into messages.
 The way mapping is implemented depends on the particular adapter, but Spring Integration provides a consistent model that’s
 easy to extend. The Spring Integration 2.0 distribution includes support for the following adapters:

	Filesystem, FTP, or Secured File Transfer Protocol (SFTP)

 	User Datagram Protocol (UDP)

 	Transmission Control Protocol (TCP)

 	HTTP (Representational State Transfer [REST])

 	Web services (SOAP)

 	Mail (POP3 or IMAP for receiving, SMTP for sending)

 	Java Message Service (JMS)

 	Java Database Connectivity (JDBC)

 	Java Management Extensions (JMX)

 	Remote Method Invocation (RMI)

 	Really Simple Syndication (RSS) feeds

 	Twitter

 	Extensible Messaging and Presence Protocol (XMPP)

Most of the protocols and transports listed here can act as either an inbound source or an outbound target for Spring Integration
 messages. In Spring Integration, the pattern name Channel Adapter applies to any unidirectional inbound or outbound adapter. In other words, an inbound channel adapter supports an in-only
 message exchange, and an outbound channel adapter supports an out-only exchange. Any bidirectional, or request-reply, adapter
 is known as a Gateway in Spring Integration. In part 2 of this book, you’ll learn about channel adapters and gateways in detail.

 Figure 1.1 obviously lacks detail, but it captures the core architecture of Spring Integration surprisingly well. The figure contains
 several boxes, and those boxes are connected via pipes. Now substitute “filters” for boxes, and you have the classic pipes-and-filters
 architectural style.[1]

 1 In this context, it’s probably better to think of filter as meaning processor.

 Anyone familiar with a UNIX-based operating system can appreciate the pipes-and-filters style: it provides the foundation
 of such operating systems. Consider a basic example:

 $> echo foo | sed s/foo/bar/
bar

 You can see that it’s literally the pipe symbol being used to connect two commands (the filters). It’s easy to swap out different
 processing steps or to extend the chain to accomplish more complex tasks while still using these same building blocks (returns
 elided):

 $> cat /usr/share/dict/words | grep ^foo | head -9 | sed s/foo/bar/
bar bard barder bardful bardless bardlessness bardstuff bardy barfaraw

 To avoid digressing into a foofaraw,[2] we should turn back to the relevance of this architectural style for Spring Integration. Those of us using the UNIX pipes-and-filters
 model on a day-to-day basis may take it for granted, but it provides a great example of two of the most universally applicable
 characteristics of good software design: low coupling and high cohesion.

 2 “A great fuss or disturbance about something very insignificant.” Random House via Dictionary.com.

 Thanks to the pipe, the processing components aren’t connected directly to each other but may be used in various loosely coupled
 combinations. Likewise, to provide useful functionality in a wide variety of such combinations, each processing component
 should be focused on one task with clearly defined input and output requirements so that the implementation itself is as cohesive,
 and hence reusable, as possible.

 These same characteristics also describe the foundation of a well-designed messaging architecture. Enterprise Integration Patterns introduces Pipes-and-Filters as a general style that promotes modularity and flexibility when designing messaging applications. Many of the other patterns
 discussed in that book can be viewed as more specialized versions of the pipes-and-filters style.

 The same holds true for Spring Integration. At the lowest level, it has simple building blocks based on the pipes-and-filters
 style. As you move up the stack to more specialized components, they exhibit the characteristics and perform the roles of
 other patterns described in Enterprise Integration Patterns. In other words, if it were representing an actual Spring Integration application, the boxes in figure 1.1 could be labeled with the names of those patterns to depict the actual roles being performed. All of this makes sense when
 you recall our description of Spring Integration as essentially the Spring programming model applied to those patterns. Let’s
 take a quick tour of the main patterns now. Then we’ll see how the Spring programming model enters the picture.

1.2. Spring Integration’s support for enterprise integration patterns

 Enterprise Integration Patterns describes the patterns used in the exchange of messages, as well as the patterns that provide the glue between applications.
 Like the diagram in figure 1.1, it’s about messaging and integration in the broadest sense, and the patterns apply to both intra-application and inter application scenarios. Spring Integration supports the patterns described in the book, so we need to establish a broad understanding
 of the definitions of these patterns and the relations between them.

 From the most general perspective, only three base patterns make up enterprise integration patterns: Message, Message Channel, and Message Endpoint. Figure 1.2 shows how these components interact with each other in a typical integration application.

 Figure 1.2. A message is passed through a channel from one endpoint to another endpoint.

 [image:]

 There are two main ways to differentiate between these patterns. First, each pattern has more specific subtypes, and second,
 some patterns are composite patterns. This section focuses on the subtypes so you have a clear understanding of the building
 blocks. Composite patterns are introduced as needed throughout the book.

 1.2.1. Messages

 A message is a unit of information that can be passed between different components, called message endpoints. Messages are
 typically sent after one endpoint is done with a bit of work, and they trigger another endpoint to do another bit of work.
 Messages can contain information in any format that’s convenient for the sending and receiving endpoints. For example, the
 message’s payload may be XML, a simple string, or a primary key referencing a record in a database. See figure 1.3.

 Figure 1.3. A message consists of a single payload and zero or more headers, represented here by the square and circle, respectively.

 [image:]

 Each message consists of headers and a pay-load. The header contains data that’s relevant to the messaging system, such as
 the Return Address or Correlation ID. The payload contains the actual data to be accessed or processed by the receiver. Messages can have different functions.
 For example, a Command Message tells the receiver to do something, an Event Message notifies the receiver that something has happened, and a Document Message transfers some data from the sender to the receiver.

 In all of these cases, the message is a representation of the contract between the sender and receiver. In some applications
 it might be fine to send a reference to an object over the channel, but in others it might be necessary to use a more interoperable
 representation like an identifier or a serialized version of the original data.

 1.2.2. Message Channels

 The message channel is the connection between multiple endpoints. The channel implementation manages the details of how and
 where a message is delivered but shouldn’t need to interact with the payload of a message. Whereas the most important characteristic
 of any channel is that it logically decouples producers from consumers, there are a number of practical implementation options. For example, a particular channel implementation might dispatch messages directly to passive consumers
 within the same thread of control. On the other hand, a different channel implementation might buffer messages in a queue
 whose reference is shared by the producer and an active consumer such that the send and receive operations each occur within
 different threads of control. Additionally, channels may be classified according to whether messages are delivered to a single
 endpoint (point-to-point) or to any endpoint that is listening to the channel (publish-subscribe). As mentioned earlier, regardless
 of the implementation details, the main goal of any message channel is to decouple the message endpoints on both sides from
 each other and from any concerns of the underlying transport.

 Two endpoints can exchange messages only if they’re connected through a channel. The details of the delivery process depend
 on the type of channel being used. We review many characteristics of the different types of channels later when we discuss
 their implementations in Spring Integration. Message channels are the key enabler for loose coupling. Both the sender and
 receiver can be completely unaware of each other thanks to the channel between them. Additional components may be needed to
 connect services that are completely unaware of messaging to the channels. We discuss this facet in the next section on message
 endpoints.

 Channels can be categorized based on two dimensions: type of handoff and type of delivery. The handoff can be either synchronous
 or asynchronous, and the delivery can be either point-to-point or publish-subscribe. The former distinction will be discussed
 in detail in the synchronous versus asynchronous section of the next chapter. The latter distinction is conceptually simpler,
 and central to enterprise integration patterns, so we describe it here.

 In point-to-point messaging (see figure 1.4), each single message that’s sent by a producer is received by exactly one consumer. This is conceptually equivalent to a
 postcard or phone call. If no consumer receives the message, it should be considered an error. This is especially true for
 any system that must support guaranteed delivery. Robust point-to-point messaging systems should also include support for load balancing and failover. The former would be like calling each number on a list in turn as new
 messages are to be delivered, and the latter would be like a home phone that’s configured to fall back to a mobile when nobody
 is home to answer it.

 Figure 1.4. A Point-to-Point Channel

 [image:]

 As these cases imply, which consumer receives the message isn’t necessarily fixed. For example, in the Competing Consumers (composite) pattern, multiple consumers compete for messages from a single channel. Once one of the consumers wins the race,
 no other consumer will receive that message from the channel. Different consumers may win each time, though, because the main
 characteristic of that pattern is that it offers a consumer-driven approach to load balancing. When a consumer can’t handle
 any more load, it stops competing for another message. Once it’s able to handle load again, it will resume.

 Unlike point-to-point messaging, a Publish-Subscribe Channel (figure 1.5) delivers the same message to zero or more subscribers. This is conceptually equivalent to a newspaper or the radio. It provides
 a gain in flexibility because consumers can tune in to the channel at runtime. The drawback of publish-subscribe messaging
 is that the sender isn’t informed about message delivery or failure to the same extent as in point-to-point configurations.
 Publish-subscribe scenarios often require failure-handling patterns such as Idempotent Receiver or Compensating Transactions.

 Figure 1.5. A Publish-Subscribe Channel

 [image:]

 1.2.3. Message endpoints

 Message endpoints are the components that actually do something with the message. This can be as simple as routing to another
 channel or as complicated as splitting the message into multiple parts or aggregating the parts back together. Connections
 to the application or the outside world are also endpoints, and these connections take the form of channel adapters, messaging
 gateways, or service activators. We discuss each of them later in this section.

 Message endpoints basically provide the connections between functional services and the messaging framework. From the point
 of view of the messaging framework, endpoints are at the end of channels. In other words, a message can leave the channel
 successfully only by being consumed by an endpoint, and a message can enter the channel only by being produced by an endpoint.
 There are many different types of endpoints. We discuss a few of them here to give you a general idea.

Channel Adapter

 A Channel Adapter (see figure 1.6) connects an application to the messaging system. In Spring Integration we chose to constrict the definition to include only
 connections that are unidirectional, so a unidirectional message flow begins and ends in a channel adapter. Many different
 kinds of channel adapters exist, ranging from a method-invoking channel adapter to a web service channel adapter. We go into
 the details of these different types in the appropriate chapters on different transports. For now, it’s sufficient to remember
 that a channel adapter is placed at the beginning and the end of a unidirectional message flow.

 Figure 1.6. Channel Adapter

 [image:]

Messaging Gateway

 In Spring Integration, a Messaging Gateway (see figure 1.7) is a connection that’s specific to bidirectional messaging. If an incoming request needs to be serviced by multiple threads
 but the invoker needs to remain unaware of the messaging system, an inbound gateway provides the solution. On the outbound
 side, an incoming message can be used in a synchronous invocation, and the result is sent on the reply channel. For example,
 outbound gateways can be used for invoking web services and for synchronous request-reply interactions over JMS.

 Figure 1.7. Messaging Gateway

 [image:]

 A gateway can also be used midstream in a unidirectional message flow. As with the channel adapter, we’ve constrained the
 definition of messaging gateway a bit in comparison to Enterprise Integration Patterns (see figure 1.8.)

 Figure 1.8. Messaging Gateway and Channel Adapters

 [image:]

Service Activator

 A Service Activator (see figure 1.9) is a component that invokes a service based on an incoming message and sends an outbound message based on the return value
 of this service invocation. In Spring Integration, the definition is constrained to local method calls, so you can think of
 a service activator as a method-invoking outbound gateway. The method that’s being invoked is defined on an object that’s
 referenced within the same Spring application context.

 Figure 1.9. Service Activator

 [image:]

Router

 A Router (see figure 1.10) determines the next channel a message should be sent to based on the incoming message. This can be useful to send messages
 with different payloads to different, specialized consumers (Content-Based Router). The router doesn’t change anything in the message and is aware of channels. Therefore, it’s the endpoint that’s typically
 closest to the infrastructure and furthest removed from the business concerns.

OEBPS/01fig04.jpg

OEBPS/01fig05.jpg

OEBPS/01fig02.jpg

OEBPS/01fig03.jpg

OEBPS/manning.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/01fig06.jpg

OEBPS/01fig08.jpg

OEBPS/01fig07.jpg

OEBPS/cover.jpg

OEBPS/01fig09.jpg

