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 Foreword


  I first met Hannes in 2006 when we started different post-graduate degrees in the same department. He quickly became known for his work leveraging the union of machine learning and electrical engineering and, in particular, a strong commitment to having a positive world impact. Throughout his career, this commitment has guided each company and project he has touched, and it was by following this internal compass that he connected with Hobson and Cole, who share similar passion for projects with a strong positive impact.


  When approached to write this foreword, it was this passion for the application of machine learning (ML) for good that persuaded me. My personal journey in machine learning research was similarly guided by a strong desire to have a positive impact on the world. My path led me to develop algorithms for multi-resolution modeling ecological data for species distributions in order to optimize conservation and survey goals. I have since been determined to continue working in areas where I can improve lives and experiences through the application of machine learning.


  
    With great power comes great responsibility.


    —Voltaire?

  


  Whether you attribute these words to Voltaire or Uncle Ben, they hold as true today as ever, though perhaps in this age we could rephrase to say, “With great access to data comes great responsibility.” We trust companies with our data in the hope that it is used to improve our lives. We allow our emails to be scanned to help us compose more grammatically correct emails; snippets of our daily lives on social media are studied and used to inject advertisements into our feeds. Our phones and homes respond to our words, sometimes when we are not even talking to them. Even our news preferences are monitored so that our interests, opinions, and beliefs are indulged. What is at the heart of all these powerful technologies?


  The answer is natural language processing. In this book you will learn both the theory and practical skills needed to go beyond merely understanding the inner workings of these systems, and start creating your own algorithms or models. Fundamental computer science concepts are seamlessly translated into a solid foundation for the approaches and practices that follow. Taking the reader on a clear and well-narrated tour through the core methodologies of natural language processing, the authors begin with tried and true methods, such as TF-IDF, before taking a shallow but deep (yes, I made a pun) dive into deep neural networks for NLP.


  Language is the foundation upon which we build our shared sense of humanity. We communicate not just facts, but emotions; through language we acquire knowledge outside of our realm of experience, and build understanding through sharing those experiences. You have the opportunity to develop a solid understanding, not just of the mechanics of NLP, but the opportunities to generate impactful systems that may one day understand humankind through our language. The technology of NLP has great potential for misuse, but also great potential for good. Through sharing their knowledge, via this book, the authors hope to tip us towards a brighter future.


  DR. ARWEN GRIFFIOEN


  SENIOR DATA SCIENTIST - RESEARCH


  ZENDESK


  
 Preface


  Around 2013, natural language processing and chatbots began dominating our lives. At first Google Search had seemed more like an index, a tool that required a little skill in order to find what you were looking for. But it soon got smarter and would accept more and more natural language searches. Then smart phone autocomplete began to get sophisticated. The middle button was often exactly the word you were looking for.[1]


  In late 2014, Thunder Shiviah and I were collaborating on a Hack Oregon project to mine natural language campaign finance data. We were trying to find connections between political donors. It seemed politicians were hiding their donors’ identities behind obfuscating language in their campaign finance filings. The interesting thing wasn’t that we were able to use simple natural language processing techniques to uncover these connections. What surprised me the most was that Thunder would often respond to my rambling emails with a succinct but apt reply seconds after I hit send on my email. He was using Smart Reply, a Gmail Inbox “assistant” that composes replies faster than you can read your email.


  So I dug deeper, to learn the tricks behind the magic. The more I learned, the more these impressive natural language processing feats seemed doable, understandable. And nearly every machine learning project I took on seemed to involve natural language processing.


  Perhaps this was because of my fondness for words and fascination with their role in human intelligence. I would spend hours debating whether words even have “meaning” with John Kowalski, my information theorist boss at Sharp Labs. As I gained confidence, and learned more and more from my mentors and mentees, it seemed like I might be able to build something new and magical myself.


  One of the tricks I learned was to iterate through a collection of documents and count how often words like “War” and “Hunger” are followed by words like “Games” or “III.” If you do that for a large collection of texts, you can get pretty good at guessing the right word in a “chain” of words, a phrase, or sentence. This classical approach to language processing was intuitive to me.


  Professors and bosses called this a Markov chain, but to me it was just a table of probabilities. It was just a list of the counts of each word, based on the preceding word. Professors would call this a conditional distribution, probabilities of words conditioned on the preceding word. The spelling corrector that Peter Norvig built for Google showed how this approach scales well and takes very little Python code.[2] All you need is a lot of natural language text. I couldn’t help but get excited as I thought about the possibilities for doing such a thing on massive free collections of text like Wikipedia or the Gutenberg Project.[3].


  Then I heard about latent semantic analysis (LSA). It seemed to be just a fancy way of describing some linear algebra operations I’d learned in college. If you keep track of all the words that occur together, you can use linear algebra to group those words into “topics.” LSA could compress the meaning of an entire sentence or even a long document into a single vector. And, when used in a search engine, LSA seemed to have an uncanny ability to return documents that were exactly what I was looking for. Good search engines would do this even when I couldn’t think of the words that might be in those documents!


  Then gensim released a Python implementation of Word2vec word vectors, making it possible to do semantic math with individual words. And it turned out that this fancy neural network math was equivalent to the old LSA technique if you just split up the documents into smaller chunks. This was an eye-opener. It gave me hope that I might be able to contribute to the field. I’d been thinking about hierarchical semantic vectors for years—how books are made of chapters of paragraphs of sentences of phrases of words of characters. Tomas Mikolov, the Word2vec inventor, had the insight that the dominant semantics of text could be found in the connection between two layers of the hierarchy, between words and 10-word phrases. For decades, NLP researchers had been thinking of words as having components, like niceness and emotional intensity. And these sentiment scores, components, could be added and subtracted to combine the meanings of multiple words. But Mikolov had figured out how to create these vectors without hand-crafting them, or even defining what the components should be. This made NLP fun!


  About that time, Thunder introduced me to his mentee, Cole. And later others introduced me to Hannes. So the three of us began to “divide and conquer” the field of NLP. I was intrigued by the possibility of building an intelligent-sounding chatbot. Cole and Hannes were inspired by the powerful black boxes of neural nets. Before long they were opening up the black box, looking inside and describing what they found to me. Cole even used it to build chatbots, to help me out in my NLP journey.


  Each time we dug into some amazing new NLP approach it seemed like something I could understand and use. And there seemed to be a Python implementation for each new technique almost as soon as it came out. The data and pretrained models we needed were often included with these Python packages. “There’s a package for that” became a common refrain on Sunday afternoons at Floyd’s Coffee Shop where Hannes, Cole, and I would brainstorm with friends or play Go and the “middle button game.” So we made rapid progress and started giving talks and lectures to Hack Oregon classes and teams.


  In 2015 and 2016 things got more serious. As Microsoft’s Tay and other bots began to run amok, it became clear that natural language bots were influencing society. In 2016 I was busy testing a bot that vacuumed up tweets in an attempt to forecast elections. At the same time, news stories were beginning to surface about the effect of Twitter bots on the US presidential election. In 2015 I had learned of a system used to predict economic trends and trigger large financial transactions based only on the “judgment” of algorithms about natural language text.[4] These economy-influencing and society-shifting algorithms had created an amplifier feedback loop. “Survival of the fittest” for these algorithms appeared to favor the algorithms that generated the most profits. And those profits often came at the expense of the structural foundations of democracy. Machines were influencing humans, and we humans were training them to use natural language to increase their influence. Obviously these machines were under the control of thinking and introspective humans, but when you realize that those humans are being influenced by the bots, the mind begins to boggle. Could those bots result in a runaway chain reaction of escalating feedback? Perhaps the initial conditions of those bots could have a big effect on whether that chain reaction was favorable or unfavorable to human values and concerns.


  Then Brian Sawyer at Manning Publishing came calling. I knew immediately what I wanted to write about and who I wanted to help me. The pace of development in NLP algorithms and aggregation of natural language data continued to accelerate as Cole, Hannes, and I raced to keep up.


  The firehose of unstructured natural language data about politics and economics helped NLP become a critical tool in any campaign or finance manager’s toolbox. It’s unnerving to realize that some of the articles whose sentiment is driving those predictions are being written by other bots. These bots are often unaware of each other. The bots are literally talking to each other and attempting to manipulate each other, while the health of humans and society as a whole seems to be an afterthought. We’re just along for the ride.


  One example of this cycle of bots talking to bots is illustrated by the rise of fintech startup Banjo in 2015.[5] By monitoring Twitter, Banjo’s NLP could predict newsworthy events 30 minutes to an hour before the first Reuters or CNN reporter filed a story. Many of the tweets it was using to detect those events would have almost certainly been favorited and retweeted by several other bots with the intent of catching the “eye” of Banjo’s NLP bot. And the tweets being favorited by bots and monitored by Banjo weren’t just curated, promoted, or metered out according to machine learning algorithms driven by analytics. Many of these tweets were written entirely by NLP engines.[6]


  More and more entertainment, advertisement, and financial reporting content generation can happen without requiring a human to lift a finger. NLP bots compose entire movie scripts.[7] Video games and virtual worlds contain bots that converse with us, sometimes talking about bots and AI themselves. This “play within a play” will get ever more “meta” as movies about video games and then bots in the real world write reviews to help us decide which movies to watch. Authorship attribution will become harder and harder as natural language processing can dissect natural language style and generate text in that style.[8]


  NLP influences society in other less straightforward ways. NLP enables efficient information retrieval (search), and being a good filter or promoter of some pages affects the information we consume. Search was the first commercially successful application of NLP. Search powered faster and faster development of NLP algorithms, which then improved search technology itself. We help you contribute to this virtuous cycle of increasing collective brain power by showing you some of the natural language indexing and prediction techniques behind web search. We show you how to index this book so that you can free your brain to do higher-level thinking, allowing machines to take care of memorizing the terminology, facts, and Python snippets here. Perhaps then you can influence your own culture for yourself and your friends with your own natural language search tools.


  The development of NLP systems has built to a crescendo of information flow and computation through and among human brains. We can now type only a few characters into a search bar, and often retrieve the exact piece of information we need to complete whatever task we’re working on, like writing the software for a textbook on NLP. The top few autocomplete options are often so uncannily appropriate that we feel like we have a human assisting us with our search. Of course we authors used various search engines throughout the writing of this textbook. In some cases these search results included social posts and articles curated or written by bots, which in turn inspired many of the NLP explanations and applications in the following pages.


  What is driving NLP advances?


  
    	A new appreciation for the ever-widening web of unstructured data?


    	Increases in processing power catching up with researchers’ ideas?


    	The efficiency of interacting with a machine in our own language?

  


  It’s all of the above and much more. You can enter the question “Why is natural language processing so important right now?” into any search engine,[9] and find the Wikipedia article full of good reasons.[10]


  There are also some deeper reasons. One such reason is the accelerating pursuit of artificial general intelligence (AGI), or Deep AI. Human intelligence may only be possible because we are able to collect thoughts into discrete packets of meaning that we can store (remember) and share efficiently. This allows us to extend our intelligence across time and geography, connecting our brains to form a collective intelligence.


  One of the ideas in Steven Pinker’s The Stuff of Thought is that we actually think in natural language.[11] It’s not called an “inner dialog” without reason. Facebook, Google, and Elon Musk are betting on the fact that words will be the default communication protocol for thought. They have all invested in projects that attempt to translate thought, brain waves, and electrical signals into words.[12] In addition, the Sapir-Whorf hypothesis is that words affect the way we think.[13] And natural language certainly is the communication medium of culture and the collective consciousness.


  So if it’s good enough for human brains, and we’d like to emulate or simulate human thought in a machine, then natural language processing is likely to be critical. Plus there may be important clues to intelligence hidden in the data structures and nested connections between words that you’re going to learn about in this book. After all, you’re going to use these structures, and connection networks make it possible for an inanimate system to digest, store, retrieve, and generate natural language in ways that sometimes appear human.


  And there’s another even more important reason why you might want to learn how to program a system that uses natural language well... you might just save the world. Hopefully you’ve been following the discussion among movers and shakers about the AI Control Problem and the challenge of developing “Friendly AI.”[14] Nick Bostrom,[15] Calum Chace,[16] Elon Musk,[17] and many others believe that the future of humanity rests on our ability to develop friendly machines. And natural language is going to be an important connection between humans and machines for the foreseeable future.


  Even once we are able to “think” directly to/with machines, those thoughts will likely be shaped by natural words and languages within our brains. The line between natural and machine language will be blurred just as the separation between man and machine fades. In fact this line began to blur in 1984. That’s the year of the Cyborg Manifesto,[18] making George Orwell’s dystopian predictions both more likely and easier for us to accept.[19], [20]


  Hopefully the phrase “help save the world” didn’t leave you incredulous. As you progress through this book, we show you how to build and connect several lobes of a chatbot “brain.” As you do this, you’ll notice that very small nudges to the social feedback loops between humans and machines can have a profound effect, both on the machines and on humans. Like a butterfly flapping its wings in China, one small decimal place adjustment to your chatbot’s “selfishness” gain can result in a chaotic storm of antagonistic chatbot behavior and conflict.[21] And you’ll also notice how a few kind, altruistic systems will quickly gather a loyal following of supporters that help quell the chaos wreaked by shortsighted bots—bots that pursue “objective functions” targeting the financial gain of their owners. Prosocial, cooperative chatbots can have an outsized impact on the world, because of the network effect of prosocial behavior.[22]


  This is how and why the authors of this book came together. A supportive community emerged through open, honest, prosocial communication over the internet using the language that came naturally to us. And we’re using our collective intelligence to help build and support other semi-intelligent actors (machines).[23] We hope that our words will leave their impression in your mind and propagate like a meme through the world of chatbots, infecting others with passion for building prosocial NLP systems. And we hope that when superintelligence does eventually emerge, it will be nudged, ever so slightly, by this prosocial ethos.
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 About this Book


  Natural Language Processing in Action is a practical guide to processing and generating natural language text in the real world. In this book we provide you with all the tools and techniques you need to build the backend NLP systems to support a virtual assistant (chatbot), spam filter, forum moderator, sentiment analyzer, knowledge base builder, natural language text miner, or nearly any other NLP application you can imagine.


  Natural Language Processing in Action is aimed at intermediate to advanced Python developers. Readers already capable of designing and building complex systems will also find most of this book useful, since it provides numerous best-practice examples and insight into the capabilities of state-of-the art NLP algorithms. While knowledge of object-oriented Python development may help you build better systems, it’s not required to use what you learn in this book.


  For special topics, we provide sufficient background material and cite resources (both text and online) for those who want to gain an in-depth understanding.


  
Roadmap


  If you are new to Python and natural language processing, you should first read part 1 and then any of the chapters of part 3 that apply to your interests or on-the-job challenges. If you want to get up to speed on the new NLP capabilities that deep learning enables, you’ll also want to read part 2, in order. It builds your understanding of neural networks, incrementally ratcheting up the complexity and capability of those neural nets.


  As soon as you find a chapter or section with a snippet that you can “run in your head,” you should run it for real on your machine. And if any of the examples look like they might run on your own text documents, you should put that text into a CSV or text file (one document per line) in the nlpia/src/nlpia/data/ directory. Then you can use the nlpia.data.loaders.get_data() function to retrieve that data and run the examples on your own data.


  
About this book


  The chapters of part 1 deal with the logistics of working with natural language and turning it into numbers that can be searched and computed. This “blocking and tackling” of words comes with the reward of some surprisingly useful applications such as information retrieval and sentiment analysis. Once you master the basics, you’ll find that some very simple arithmetic, computed over and over and over in a loop, can solve some pretty important problems, such as spam filtering. Spam filters of the type you’ll build in chapters 2 through 4 are what saved the global email system from anarchy and stagnation. You’ll learn how to build a spam filter with better than 90% accuracy using 1990s era technology—calculating nothing more than the counts of words and some simple averages of those counts.


  All this math with words may sound tedious, but it’s actually quite fun. Very quickly you’ll be able to build algorithms that can make decisions about natural language as well or better than you can (and certainly much faster). This may be the first time in your life that you have the perspective to fully appreciate the way that words reflect and empower your thinking. The high-dimensional vector-space view of words and thoughts will hopefully leave your brain spinning in recurrent loops of self-discovery.


  That crescendo of learning may reach a high point toward the middle of this book. The core of this book in part 2 will be your exploration of the complicated web of computation and communication within neural networks. The network effect of small logical units interacting in a web of “thinking” has empowered machines to solve problems that only smart humans even bothered to attempt in the past, things such as analogy questions, text summarization, and translation between natural languages.


  Yes, you’ll learn about word vectors, don’t worry, but oh so much more. You’ll be able to visualize words, documents, and sentences in a cloud of connected concepts that stretches well beyond the three dimensions you can readily grasp. You’ll start thinking of documents and words like a Dungeons and Dragons character sheet with a myriad of randomly selected characteristics and abilities that have evolved and grown over time, but only in our heads.


  An appreciation for this intersubjective reality of words and their meaning will be the foundation for the coup-de-grace of part 3, where you learn how to build machines that converse and answer questions as well as humans.


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  The source code for all listings in this book is available for download from the Manning website at https://www.manning.com/books/natural-language-processing-in-action and from GitHub at https://github.com/totalgood/nlpia.


  


  


  


liveBook discussion forum


  Purchase of Natural Language Processing in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/natural-language-processing-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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 About the cover Illustration
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  1  Hit the middle button (https://www.reddit.com/r/ftm/comments/2zkwrs/middle_button_game/:) repeatedly on a smart phone predictive text keyboard to learn what Google thinks you want to say next. It was first introduced on Reddit as the “SwiftKey game” (https://blog.swiftkey.com/swiftkey-game-winning-is/) in 2013.


  2  See the web page titled “How to Write a Spelling Corrector” by Peter Norvig (http://www.norvig.com/spell-correct.html).


  3  If you appreciate the importance of having freely accessible books of natural language, you may want to keep abreast of the international effort to extend copyrights far beyond their original “use by” date: gutenberg.org (http://www.gutenberg.org) and gutenbergnews.org (http://www.gutenbergnews.org/20150208/copyrightterm-extensions-are-looming:)


  4  See the web page titled “Why Banjo Is the Most Important Social Media Company You’ve Never Heard Of” (https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html).


  5  Banjo, https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html


  6  The 2014 financial report by Twitter revealed that >8% of tweets were composed by bots, and in 2015 DARPA held a competition (https://arxiv.org/ftp/arxiv/papers/1601/1601.05140.pdf) to try to detect them and reduce their influence on society in the US.


  7  Five Thirty Eight, http://fivethirtyeight.com/features/some-like-it-bot/


  8  NLP has been used successfully to help quantify the style of 16th century authors like Shakespeare (https://pdfs.semanticscholar.org/3973/ff27eb173412ce532c8684b950f4cd9b0dc8.pdf).
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  10  See the Wikipedia article “Natural language processing” (https://en.wikipedia.org/wiki/Natural_language_processingWikipedia/NLP).


  11  Steven Pinker, https://en.wikipedia.org/wiki/The_Stuff_of_Thought


  12  See the Wired Magazine Article “We are Entering the Era of the Brain Machine Interface” (https://backchannel.com/we-are-entering-the-era-of-the-brain-machine-interface-75a3a1a37fd3).


  13  See the web page titled “Linguistic relativity” (https://en.wikipedia.org/wiki/Linguistic_relativity).


  14  Wikipedia, AI Control Problem, https://en.wikipedia.org/wiki/AI_control_problem


  15  Nick Bostrom, home page, http://nickbostrom.com/


  16  Calum Chace, Surviving AI, https://www.singularityweblog.com/calum-chace-on-surviving-ai/


  17  See the web page titled “Why Elon Musk Spent $10 Million To Keep Artificial Intelligence Friendly” (http://www.forbes.com/sites/ericmack/2015/01/15/elon-musk-puts-down-10-million-to-fight-skynet/#17f7ee7b4bd0).


  18  Haraway, Cyborg Manifesto, https://en.wikipedia.org/wiki/A_Cyborg_Manifesto


  19  Wikipedia on George Orwell’s 1984, https://en.wikipedia.org/wiki/Nineteen_Eighty-Four


  20  Wikipedia, The Year 1984, https://en.wikipedia.org/wiki/1984


  21  A chatbot’s main tool is to mimic the humans it is conversing with. So dialog participants can use that influence to engender both prosocial and antisocial behavior in bots. See the Tech Republic article “Why Microsoft’s Tay AI Bot Went Wrong” (http://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong).


  22  An example of autonomous machines “infecting” humans with their measured behavior can be found in studies of the impact self-driving cars are likely to have on rush-hour traffic (https://www.enotrans.org/wp-content/uploads/AV-paper.pdf). In some studies, as few as 1 in 10 vehicles around you on the freeway will help moderate human behavior, reducing congestion and producing smoother, safer traffic flow.


  23  Toby Segaran’s Programming Collective Intelligence kicked off my adventure with machine learning in 2010 (https://www.goodreads.com/book/show/1741472.Programming_Collective_Intelligence).


  Part 1. Wordy machines


  Part 1 kicks off your natural language processing (NLP) adventure with an introduction to some real-world applications.


  In chapter 1, you’ll quickly begin to think of ways you can use machines that process words in your own life. And hopefully you’ll get a sense for the magic—the power of machines that can glean information from the words in a natural language document. Words are the foundation of any language, whether it’s the keywords in a programming language or the natural language words you learned as a child.


  In chapter 2, we give you the tools you need to teach machines to extract words from documents. There’s more to it than you might guess, and we show you all the tricks. You’ll learn how to automatically group natural language words together into groups of words with similar meanings without having to hand-craft synonym lists.


  In chapter 3, we count those words and assemble them into vectors that represent the meaning of a document. You can use these vectors to represent the meaning of an entire document, whether it’s a 140-character tweet or a 500-page novel.


  In chapter 4, you’ll discover some time-tested math tricks to compress your vectors down to much more useful topic vectors.


  By the end of part 1, you’ll have the tools you need for many interesting NLP applications—from semantic search to chatbots.


  1 Packets of thought (NLP overview)


  This chapter covers


  
    	What natural language processing (NLP) is


    	Why NLP is hard and only recently has become widespread


    	When word order and grammar is important and when it can be ignored


    	How a chatbot combines many of the tools of NLP


    	How to use a regular expression to build the start of a tiny chatbot

  


  You are about to embark on an exciting adventure in natural language processing. First we show you what NLP is and all the things you can do with it. This will get your wheels turning, helping you think of ways to use NLP in your own life, both at work and at home.


  Then we dig into the details of exactly how to process a small bit of English text using a programming language like Python, which will help you build up your NLP toolbox incrementally. In this chapter, you’ll write your first program that can read and write English statements. This Python snippet will be the first of many you’ll use to learn all the tricks needed to assemble an English language dialog engine—a chatbot.


  
1.1 Natural language vs. programming language


  Natural languages are different from computer programming languages. They aren’t intended to be translated into a finite set of mathematical operations, like programming languages are. Natural languages are what humans use to share information with each other. We don’t use programming languages to tell each other about our day or to give directions to the grocery store. A computer program written with a programming language tells a machine exactly what to do. But there are no compilers or interpreters for natural languages such as English and French.


  Definition   Natural language processing is an area of research in computer science and artificial intelligence (AI) concerned with processing natural languages such as English or Mandarin. This processing generally involves translating natural language into data (numbers) that a computer can use to learn about the world. And this understanding of the world is sometimes used to generate natural language text that reflects that understanding.


  Nonetheless, this chapter shows you how a machine can process natural language. You might even think of this as a natural language interpreter, just like the Python interpreter. When the computer program you develop processes natural language, it will be able to act on those statements or even reply to them. But these actions and replies aren’t precisely defined, which leaves more discretion up to you, the developer of the natural language pipeline.


  Definition   A natural language processing system is often referred to as a pipeline because it usually involves several stages of processing where natural language flows in one end and the processed output flows out the other.


  You’ll soon have the power to write software that does interesting, unpredictable things, like carry on a conversation, which can make machines seem a bit more human. It may seem a bit like magic—at first, all advanced technology does. But we pull back the curtain so you can explore backstage, and you’ll soon discover all the props and tools you need to do the magic tricks yourself.


  
    “Everything is easy, once you know the answer..


    —Dave Magee

  


  
1.2 The magic


  What’s so magical about a machine that can read and write in a natural language? Machines have been processing languages since computers were invented. However, these “formal” languages—such as early languages Ada, COBOL, and Fortran—were designed to be interpreted (or compiled) only one correct way. Today Wikipedia lists more than 700 programming languages. In contrast, Ethnologue[1] has identified 10 times as many natural languages spoken by humans around the world. And Google’s index of natural language documents is well over 100 million gigabytes.[2] And that’s just the index. And it’s incomplete. The size of the actual natural language content currently online must exceed 100 billion gigabytes.[3] But this massive amount of natural language text isn’t the only reason it’s important to build software that can process it.


  The interesting thing about the process is that it’s hard. Machines with the capability of processing something natural isn’t natural. It’s kind of like building a structure that can do something useful with architectural diagrams. When software can process languages not designed for machines to understand, it seems magical—something we thought was a uniquely human capability.


  The word “natural” in “natural language” is used in the same sense that it is used in “natural world.” Natural, evolved things in the world about us are different from mechanical, artificial things designed and built by humans. Being able to design and build software that can read and process language like what you’re reading here—language about building software that can process natural language... well that’s very meta, very magical.


  To make your job a little easier, we focus on only one natural language, English. But you can use the techniques you learn in this book to build software that can process any language, even a language you don’t understand, or has yet to be deciphered by archaeologists and linguists. And we’re going to show you how to write software to process and generate that language using only one programming language, Python.


  Python was designed from the ground up to be a readable language. It also exposes a lot of its own language processing “guts.” Both of these characteristics make it a natural choice for learning natural language processing. It’s a great language for building maintainable production pipelines for NLP algorithms in an enterprise environment, with many contributors to a single codebase. We even use Python in lieu of the “universal language” of mathematics and mathematical symbols, wherever possible. After all, Python is an unambiguous way to express mathematical algorithms,[4] and it’s designed to be as readable as possible for programmers like you.


  1.2.1 Machines that converse


  Natural languages can’t be directly translated into a precise set of mathematical operations, but they do contain information and instructions that can be extracted. Those pieces of information and instruction can be stored, indexed, searched, or immediately acted upon. One of those actions could be to generate a sequence of words in response to a statement. This is the function of the “dialog engine” or chatbot that you’ll build.


  We focus entirely on English text documents and messages, not spoken statements. We bypass the conversion of spoken statements into text—speech recognition, or speech to text (STT). We also ignore speech generation or text to speech, converting text back into some human-sounding voice utterance. But you can still use what you learn to build a voice interface or virtual assistant like Siri or Alexa, because speech-to-text and text-to-speech libraries are freely available. Android and iOS mobile operating systems provide high quality speech recognition and generation APIs, and there are Python packages to accomplish similar functionality on a laptop or server.


  
    Speech recognition systems


    If you want to build a customized speech recognition or generation system, that undertaking is a whole book in itself; we leave that as an “exercise for the reader.” It requires a lot of high quality labeled data, voice recordings annotated with their phonetic spellings, and natural language transcriptions aligned with the audio files. Some of the algorithms you learn in this book might help, but most of the recognition and generation algorithms are quite different.

  


  1.2.2 The math


  Processing natural language to extract useful information can be difficult. It requires tedious statistical bookkeeping, but that’s what machines are for. And like many other technical problems, solving it is a lot easier once you know the answer. Machines still cannot perform most practical NLP tasks, such as conversation and reading comprehension, as accurately and reliably as humans. So you might be able to tweak the algorithms you learn in this book to do some NLP tasks a bit better.


  The techniques you’ll learn, however, are powerful enough to create machines that can surpass humans in both accuracy and speed for some surprisingly subtle tasks. For example, you might not have guessed that recognizing sarcasm in an isolated Twitter message can be done more accurately by a machine than by a human.[5] Don’t worry, humans are still better at recognizing humor and sarcasm within an ongoing dialog, due to our ability to maintain information about the context of a statement. But machines are getting better and better at maintaining context. And this book helps you incorporate context (metadata) into your NLP pipeline, in case you want to try your hand at advancing the state of the art.


  Once you extract structured numerical data, vectors, from natural language, you can take advantage of all the tools of mathematics and machine learning. We use the same linear algebra tricks as the projection of 3D objects onto a 2D computer screen, something that computers and drafters were doing long before natural language processing came into its own. These breakthrough ideas opened up a world of “semantic” analysis, allowing computers to interpret and store the “meaning” of statements rather than just word or character counts. Semantic analysis, along with statistics, can help resolve the ambiguity of natural language—the fact that words or phrases often have multiple meanings or interpretations.


  So extracting information isn’t at all like building a programming language compiler (fortunately for you). The most promising techniques bypass the rigid rules of regular grammars (patterns) or formal languages. You can rely on statistical relationships between words instead of a deep system of logical rules.[6] Imagine if you had to define English grammar and spelling rules in a nested tree of if...then statements. Could you ever write enough rules to deal with every possible way that words, letters, and punctuation can be combined to make a statement? Would you even begin to capture the semantics, the meaning of English statements? Even if it were useful for some kinds of statements, imagine how limited and brittle this software would be. Unanticipated spelling or punctuation would break or befuddle your algorithm.


  Natural languages have an additional “decoding” challenge that is even harder to solve. Speakers and writers of natural languages assume that a human is the one doing the processing (listening or reading), not a machine. So when I say “good morning”, I assume that you have some knowledge about what makes up a morning, including not only that mornings come before noons and afternoons and evenings but also after midnights. And you need to know they can represent times of day as well as general experiences of a period of time. The interpreter is assumed to know that “good morning” is a common greeting that doesn’t contain much information at all about the morning. Rather it reflects the state of mind of the speaker and her readiness to speak with others.


  This theory of mind about the human processor of language turns out to be a powerful assumption. It allows us to say a lot with few words if we assume that the “processor” has access to a lifetime of common sense knowledge about the world. This degree of compression is still out of reach for machines. There is no clear “theory of mind” you can point to in an NLP pipeline. However, we show you techniques in later chapters to help machines build ontologies, or knowledge bases, of common sense knowledge to help interpret statements that rely on this knowledge.


  
1.3 Practical applications


  Natural language processing is everywhere. It’s so ubiquitous that some of the examples in table 1.1 may surprise you.


  Table 1.1 Categorized NLP applications


  
    
      
      
      
      
    

    
      
        	Search

        	Web

        	Documents

        	Autocomplete
      


      
        	Editing

        	Spelling

        	Grammar

        	Style
      


      
        	Dialog

        	Chatbot

        	Assistant

        	Scheduling
      


      
        	Writing

        	Index

        	Concordance

        	Table of contents
      


      
        	Email

        	Spam filter

        	Classification

        	Prioritization
      


      
        	Text mining

        	Summarization

        	Knowledge extraction

        	Medical diagnoses
      


      
        	Law

        	Legal inference

        	Precedent search

        	Subpoena classification
      


      
        	News

        	Event detection

        	Fact checking

        	Headline composition
      


      
        	Attribution

        	Plagiarism detection

        	Literary forensics

        	Style coaching
      


      
        	Sentiment analysis

        	Community morale monitoring

        	Product review triage

        	Customer care
      


      
        	Behavior prediction

        	Finance

        	Election forecasting

        	Marketing
      


      
        	Creative writing

        	Movie scripts

        	Poetry

        	Song lyrics
      

    
  


  A search engine can provide more meaningful results if it indexes web pages or document archives in a way that takes into account the meaning of natural language text. Autocomplete uses NLP to complete your thought and is common among search engines and mobile phone keyboards. Many word processors, browser plugins, and text editors have spelling correctors, grammar checkers, concordance composers, and most recently, style coaches. Some dialog engines (chatbots) use natural language search to find a response to their conversation partner’s message.


  NLP pipelines that generate (compose) text can be used not only to compose short replies in chatbots and virtual assistants, but also to assemble much longer passages of text. The Associated Press uses NLP “robot journalists” to write entire financial news articles and sporting event reports.[7] Bots can compose weather forecasts that sound a lot like what your hometown weather person might say, perhaps because human meteorologists use word processors with NLP features to draft scripts.


  NLP systems can generate more than just short social network posts. NLP can be used to compose lengthy movie and product reviews on Amazon and elsewhere. Many reviews are the creation of autonomous NLP pipelines that have never set foot in a movie theater or purchased the product they’re reviewing.


  There are chatbots on Slack, IRC, and even customer service websites—places where chatbots have to deal with ambiguous commands or questions. And chatbots paired with voice recognition and generation systems can even handle lengthy conversations with an indefinite goal or “objective function” such as making a reservation at a local restaurant.[9] NLP systems can answer phones for companies that want something better than a phone tree but don’t want to pay humans to help their customers.


  Note   With its Duplex demonstration at Google IO, engineers and managers overlooked concerns about the ethics of teaching chatbots to deceive humans. We all ignore this dilemma when we happily interact with chatbots on Twitter and other anonymous social networks, where bots don’t share their pedigree. With bots that can so convincingly deceive us, the AI control problem[10] looms, and Yuval Harari’s cautionary forecast of “Homo Deus”[11] may come sooner than we think.


  NLP systems exist that can act as email “receptionists” for businesses or executive assistants for managers. These assistants schedule meetings and record summary details in an electronic Rolodex, or CRM (customer relationship management system), interacting with others by email on their boss’s behalf. Companies are putting their brand and face in the hands of NLP systems, allowing bots to execute marketing and messaging campaigns. And some inexperienced daredevil NLP textbook authors are letting bots author several sentences in their book. More on that later.


  
1.4 Language through a computer’s “eyes”


  When you type “Good Morn’n Rosa,” a computer sees only “01000111 01101111 01101111 ...”. How can you program a chatbot to respond to this binary stream intelligently? Could a nested tree of conditionals (if... else... statements) check each one of those bits and act on them individually? This would be equivalent to writing a special kind of program called a finite state machine (FSM). An FSM that outputs a sequence of new symbols as it runs, like the Python str.translate function, is called a finite state transducer (FST). You’ve probably already built an FSM without even knowing it. Have you ever written a regular expression? That’s the kind of FSM we use in the next section to show you one possible approach to NLP: the pattern-based approach.


  What if you decided to search a memory bank (database) for the exact same string of bits, characters, or words, and use one of the responses that other humans and authors have used for that statement in the past? But imagine if there was a typo or variation in the statement. Our bot would be sent off the rails. And bits aren’t continuous or forgiving—they either match or they don’t. There’s no obvious way to find similarity between two streams of bits that takes into account what they signify. The bits for “good” will be just as similar to “bad!” as they are to “okay.”


  But let’s see how this approach would work before we show you a better way. Let’s build a small regular expression to recognize greetings like “Good morning Rosa” and respond appropriately—our first tiny chatbot!


  1.4.1 The language of locks


  Surprisingly, the humble combination lock is actually a simple language processing machine. So, if you’re mechanically inclined, this section may be illuminating. But if you don’t need mechanical analogies to help you understand algorithms and how regular expressions work, then you can skip this section.


  After finishing this section, you’ll never think of your combination bicycle lock the same way again. A combination lock certainly can’t read and understand the textbooks stored inside a school locker, but it can understand the language of locks. It can understand when you try to “tell” it a “password”: a combination. A padlock combination is any sequence of symbols that matches the “grammar” (pattern) of lock language. Even more importantly, the padlock can tell if a lock “statement” matches a particularly meaningful statement, the one for which there’s only one correct “response”: to release the catch holding the U-shaped hasp so you can get into your locker.


  This lock language (regular expressions) is a particularly simple one. But it’s not so simple that we can’t use it in a chatbot. We can use it to recognize a key phrase or command to unlock a particular action or behavior.


  For example, we’d like our chatbot to recognize greetings such as “Hello Rosa,” and respond to them appropriately. This kind of language, like the language of locks, is a formal language because it has strict rules about how an acceptable statement must be composed and interpreted. If you’ve ever written a math equation or coded a programming language expression, you’ve written a formal language statement.


  Formal languages are a subset of natural languages. Many natural language statements can be matched or generated using a formal language grammar, like regular expressions. That’s the reason for this diversion into the mechanical, “click, whirr”[12] language of locks.


  1.4.2 Regular expressions


  Regular expressions use a special kind (class) of formal language grammar called a regular grammar. Regular grammars have predictable, provable behavior, and yet are flexible enough to power some of the most sophisticated dialog engines and chatbots on the market. Amazon Alexa and Google Now are mostly pattern-based engines that rely on regular grammars. Deep, complex regular grammar rules can often be expressed in a single line of code called a regular expression. There are successful chatbot frameworks in Python, like Will, that rely exclusively on this kind of language to produce some useful and interesting behavior. Amazon Echo, Google Home, and similarly complex and useful assistants use this kind of language to encode the logic for most of their user interaction.


  Note   Regular expressions implemented in Python and in Posix (Unix) applications such as grep aren’t true regular grammars. They have language and logic features such as look-ahead and look-back that make leaps of logic and recursion that aren’t allowed in a regular grammar. As a result, regular expressions aren’t provably halting; they can sometimes “crash” or run forever.[13]


  You may be saying to yourself, “I’ve heard of regular expressions. I use grep. But that’s only for search!” And you’re right. Regular expressions are indeed used mostly for search, for sequence matching. But anything that can find matches within text is also great for carrying out a dialog. Some chatbots, like Will, use “search” to find sequences of characters within a user statement that they know how to respond to. These recognized sequences then trigger a scripted response appropriate to that particular regular expression match. And that same regular expression can also be used to extract a useful piece of information from a statement. A chatbot can add that bit of information to its knowledge base about the user or about the world the user is describing.


  A machine that processes this kind of language can be thought of as a formal mathematical object called a finite state machine or deterministic finite automaton (DFA). FSMs come up again and again in this book. So you’ll eventually get a good feel for what they’re used for without digging into FSM theory and math. For those who can’t resist trying to understand a bit more about these computer science tools, figure 1.1 shows where FSMs fit into the nested world of automata (bots). And the side note that follows explains a bit more formal detail about formal languages.


  
    Figure 1.1 Kinds of automata
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    Formal mathematical explanation of formal languages


    Kyle Gorman describes programming languages this way:


    
      	Most (if not all) programming languages are drawn from the class of context-free languages.


      	Context-free languages are parsed with context-free grammars, which provide efficient parsing.


      	The regular languages are also efficiently parsable and used extensively in computing for string matching.


      	String matching applications rarely require the expressiveness of context-free.


      	There are a number of formal language classes, a few of which are shown here (in decreasing complexity):[a]

        
          	Recursively enumerable


          	Context-sensitive


          	Context-free


          	Regular

        

      

    


    Natural languages:


    
      	Are not regular[b]



      	Are not context-free[c]



      	Can’t be defined by any formal grammar[d]


    

    


    a  See the web page titled “Chomsky hierarchy - Wikipedia” (https://en.wikipedia.org/wiki/Chomsky_hierarchy).


    b  “English is not a regular language” (http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=20) by Shuly Wintner.


    c  “Is English context-free?” (http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=24) by Shuly Wintner.


    d  See the web page titled “1.11. Formal and Natural Languages — How to Think like a Computer Scientist: Interactive Edition” (http://interactivepython.org/runestone/static/CS152f17/GeneralIntro/FormalandNaturalLanguages.html).

  


  1.4.3 A simple chatbot


  Let’s build a quick and dirty chatbot. It won’t be very capable, and it will require a lot of thinking about the English language. You will also have to hardcode regular expressions to match the ways people may try to say something. But don’t worry if you think you couldn’t have come up with this Python code yourself. You won’t have to try to think of all the different ways people can say something, like we did in this example. You won’t even have to write regular expressions (regexes) to build an awesome chatbot. We show you how to build a chatbot of your own in later chapters without hardcoding anything. A modern chatbot can learn from reading (processing) a bunch of English text. And we show you how to do that in later chapters.


  This pattern matching chatbot is an example of a tightly controlled chatbot. Pattern matching chatbots were common before modern machine learning chatbot techniques were developed. And a variation of the pattern matching approach we show you here is used in chatbots like Amazon Alexa and other virtual assistants.


  For now let’s build an FSM, a regular expression, that can speak lock language (regular language). We could program it to understand lock language statements, such as “01-02-03.” Even better, we’d like it to understand greetings, things like “open sesame” or “hello Rosa.” An important feature for a prosocial chatbot is to be able to respond to a greeting. In high school, teachers often chastised me for being impolite when I’d ignore greetings like this while rushing to class. We surely don’t want that for our benevolent chatbot.


  In machine communication protocol, we’d define a simple handshake with an ACK (acknowledgement) signal after each message passed back and forth between two machines. But our machines are going to be interacting with humans who say things like “Good morning, Rosa.” We don’t want it sending out a bunch of chirps, beeps, or ACK messages, like it’s syncing up a modem or HTTP connection at the start of a conversation or web browsing session. Instead let’s use regular expressions to recognize several different human greetings at the start of a conversation handshake:

  >>> import re                                                 ❶
>>> r = "(hi|hello|hey)[ ]*([a-z]*)"                          ❷
>>> re.match(r, 'Hello Rosa', flags=re.IGNORECASE)            ❸
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re.match(r, "hi ho, hi ho, it's off to work ...", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 5), match='hi ho'>
>>> re.match(r, "hey, what's up", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 3), match='hey>


  ❶ There are two “official” regular expression packages in Python. We use the re package here just because it’s installed with all versions of Python. The regex package comes with later versions of Python and is much more powerful, as you’ll see in chapter 2.


  ❷ '|' means “OR,” and '\*' means the preceding character can occur 0 or more times and still match. So our regex will match greetings that start with “hi” or “hello” or “hey” followed by any number of '<space>' characters and then any number of letters.


  ❸ Ignoring the case of text characters is common, to keep the regular expressions simpler.


  In regular expressions, you can specify a character class with square brackets. And you can use a dash (-) to indicate a range of characters without having to type them all out individually. So the regular expression "[a-z]" will match any single lowercase letter, “a” through “z.” The star ('*') after a character class means that the regular expression will match any number of consecutive characters if they are all within that character class.


  Let’s make our regular expression a lot more detailed to try to match more greetings:

  >>> r = r"[^a-z]*([y]o|[h']?ello|ok|hey|(good[ ])?(morn[gin']{0,3}|"\
...     r"afternoon|even[gin']{0,3}))[\s,;:]{1,3}([a-z]{1,20})"
>>> re_greeting = re.compile(r, flags=re.IGNORECASE)                 ❶
>>> re_greeting.match('Hello Rosa')
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re_greeting.match('Hello Rosa').groups()
('Hello', None, None, 'Rosa')
>>> re_greeting.match("Good morning Rosa")
<_sre.SRE_Match object; span=(0, 17), match="Good morning Rosa">
>>> re_greeting.match("Good Manning Rosa")                           ❷
>>> re_greeting.match('Good evening Rosa Parks').groups()            ❸
('Good evening', 'Good ', 'evening', 'Rosa')
>>> re_greeting.match("Good Morn'n Rosa")
<_sre.SRE_Match object; span=(0, 16), match="Good Morn'n Rosa">
>>> re_greeting.match("yo Rosa")
<_sre.SRE_Match object; span=(0, 7), match='yo Rosa'>


  ❶ You can compile regular expressions so you don’t have to specify the options (flags) each time you use them.


  ❷ Notice that this regular expression cannot recognize (match) words with typos.


  ❸ Our chatbot can separate different parts of the greeting into groups, but it will be unaware of Rosa’s famous last name, because we don’t have a pattern to match any characters after the first name.


  Tip   The “r” before the quote specifies a raw string, not a regular expression. With a Python raw string, you can send backslashes directly to the regular expression compiler without having to double-backslash ("\\") all the special regular expression characters such as spaces ("\\ ") and curly braces or handlebars ("\\{ \\}").


  There’s a lot of logic packed into that first line of code, the regular expression. It gets the job done for a surprising range of greetings. But it missed that “Manning” typo, which is one of the reasons NLP is hard. In machine learning and medical diagnostic testing, that’s called a false negative classification error. Unfortunately, it will also match some statements that humans would be unlikely to ever say—a false positive, which is also a bad thing. Having both false positive and false negative errors means that our regular expression is both too liberal and too strict. These mistakes could make our bot sound a bit dull and mechanical. We’d have to do a lot more work to refine the phrases that it matches to be more human-like.


  And this tedious work would be highly unlikely to ever succeed at capturing all the slang and misspellings people use. Fortunately, composing regular expressions by hand isn’t the only way to train a chatbot. Stay tuned for more on that later (the entire rest of the book). So we only use them when we need precise control over a chatbot’s behavior, such as when issuing commands to a voice assistant on your mobile phone.


  But let’s go ahead and finish up our one-trick chatbot by adding an output generator. It needs to say something. We use Python’s string formatter to create a “template” for our chatbot response:

  >>> my_names = set(['rosa', 'rose', 'chatty', 'chatbot', 'bot',
...     'chatterbot'])
>>> curt_names = set(['hal', 'you', 'u'])
>>> greeter_name = ''                         ❶
>>> match = re_greeting.match(input())
...
>>> if match:
...     at_name = match.groups()[-1]
...     if at_name in curt_names:
...         print("Good one.")
...     elif at_name.lower() in my_names:
...         print("Hi {}, How are you?".format(greeter_name))


  ❶ We don’t yet know who is chatting with the bot, and we won’t worry about it here.


  So if you run this little script and chat to our bot with a phrase like “Hello Rosa,” it will respond by asking about your day. If you use a slightly rude name to address the chatbot, she will be less responsive, but not inflammatory, to try to encourage politeness.[14] If you name someone else who might be monitoring the conversation on a party line or forum, the bot will keep quiet and allow you and whomever you are addressing to chat. Obviously there’s no one else out there watching our input() line, but if this were a function within a larger chatbot, you’d want to deal with these sorts of things.


  NLP spam filters in early email programs helped email overtake telephone and fax communication channels in the '90s. And the spam filters have retained their edge in the cat and mouse game between spam filters and spam generators for email, but may be losing in other environments like social networks. An estimated 20% of the tweets about the 2016 US presidential election were composed by chatbots.[8] These bots amplify their owners’ and developers’ viewpoints. And these “puppet masters” tend to be foreign governments or large corporations with the resources and motivation to influence popular opinion.


  Because of the limitations of computational resources, early NLP researchers had to use their human brains’ computational power to design and hand-tune complex logical rules to extract information from a natural language string. This is called a pattern-based approach to NLP. The patterns don’t have to be merely character sequence patterns, like our regular expression. NLP also often involves patterns of word sequences, or parts of speech, or other “higher level” patterns. The core NLP building blocks like stemmers and tokenizers as well as sophisticated end-to-end NLP dialog engines (chatbots) like ELIZA were built this way, from regular expressions and pattern matching. The art of pattern-matching approaches to NLP is coming up with elegant patterns that capture just what you want, without too many lines of regular expression code.


  Classical computational theory of mind This classical NLP pattern-matching approach is based on the computational theory of mind (CTM). CTM assumes that human-like NLP can be accomplished with a finite set of logical rules that are processed in series.[15] Advancements in neuroscience and NLP led to the development of a “connectionist” theory of mind around the turn of the century, which allows for parallel pipelines processing natural language simultaneously, as is done in artificial neural networks.[16], [17]


  You’ll learn more about pattern-based approaches—such as the Porter stemmer or the Treebank tokenizer—to tokenizing and stemming in chapter 2. But in later chapters we take advantage of modern computational resources, as well as our larger data-sets, to shortcut this laborious hand programming and refining.


  If you’re new to regular expressions and want to learn more, you can check out appendix A or the online documentation for Python regular expressions. But you don’t have to understand them just yet. We’ll continue to provide you with example regular expressions as we use them for the building blocks of our NLP pipeline. So don’t worry if they look like gibberish. Human brains are pretty good at generalizing from a set of examples, and I’m sure it will become clear by the end of this book. And it turns out machines can learn this way as well.


  1.4.4 Another way


  Is there a statistical or machine learning approach that might work in place of the pattern-based approach? If we had enough data could we do something different? What if we had a giant database containing sessions of dialog between humans, statements and responses for thousands or even millions of conversations? One way to build a chatbot would be to search that database for the exact same string of characters our chatbot user just “said” to our chatbot. Couldn’t we then use one of the responses to that statement that other humans have said in the past?


  But imagine how a single typo or variation in the statement would trip up our bot. Bit and character sequences are discrete. They either match or they don’t. Instead, we’d like our bot to be able to measure the difference in meaning between character sequences.


  When we use character sequence matches to measure distance between natural language phrases, we’ll often get it wrong. Phrases with similar meaning, like “good” and “okay,” can often have different character sequences and large distances when we count up character-by-character matches to measure distance. And sequences with completely different meanings, like “bad” and “bar,” might be too close to one other when we use metrics designed to measure distances between numerical sequences. Metrics like Jaccard, Levenshtein, and Euclidean vector distance can sometimes add enough “fuzziness” to prevent a chatbot from stumbling over minor spelling errors or typos. But these metrics fail to capture the essence of the relationship between two strings of characters when they are dissimilar. And they also sometimes bring small spelling differences close together that might not really be typos, like “bad” and “bar.”


  Distance metrics designed for numerical sequences and vectors are useful for a few NLP applications, like spelling correctors and recognizing proper nouns. So we use these distance metrics when they make sense. But for NLP applications where we are more interested in the meaning of the natural language than its spelling, there are better approaches. We use vector representations of natural language words and text and some distance metrics for those vectors for these NLP applications. We show you each approach, one by one, as we talk about these different vector representations and the kinds of applications they are used with.


  We won’t stay in this confusing binary world of logic for long, but let’s imagine we’re famous World War II-era code-breaker Mavis Batey at Bletchley Park and we’ve just been handed that binary, Morse code message intercepted from communication between two German military officers. It could hold the key to winning the war. Where would we start? Well the first step in our analysis would be to do something statistical with that stream of bits to see if we can find patterns. We can first use the Morse code table (or ASCII table, in our case) to assign letters to each group of bits. Then, if the characters are gibberish to us, as they are to a computer or a cryptographer in WWII, we could start counting them up, looking up the short sequences in a dictionary of all the words we’ve seen before and putting a mark next to the entry every time it occurs. We might also make a mark in some other log book to indicate which message the word occurred in, creating an encyclopedic index to all the documents we’ve read before. This collection of documents is called a corpus, and the collection of words or sequences we’ve listed in our index is called a lexicon.


  If we’re lucky, and we’re not at war, and the messages we’re looking at aren’t strongly encrypted, we’ll see patterns in those German word counts that mirror counts of English words used to communicate similar kinds of messages. Unlike a cryptographer trying to decipher German Morse code intercepts, we know that the symbols have consistent meaning and aren’t changed with every key click to try to confuse us. This tedious counting of characters and words is just the sort of thing a computer can do without thinking. And surprisingly, it’s nearly enough to make the machine appear to understand our language. It can even do math on these statistical vectors that coincides with our human understanding of those phrases and words. When we show you how to teach a machine our language using Word2Vec in later chapters, it may seem magical, but it’s not. It’s just math, computation.


  But let’s think for a moment about what information has been lost in our effort to count all the words in the messages we receive. We assign the words to bins and store them away as bit vectors like a coin or token sorter directing different kinds of tokens to one side or the other in a cascade of decisions that piles them in bins at the bottom. Our sorting machine must take into account hundreds of thousands if not millions of possible token “denominations,” one for each possible word that a speaker or author might use. Each phrase or sentence or document we feed into our token sorting machine will come out the bottom, where we have a “vector” with a count of the tokens in each slot. Most of our counts are zero, even for large documents with verbose vocabulary. But we haven’t lost any words yet. What have we lost? Could you, as a human, understand a document that we presented you in this way, as a count of each possible word in your language, without any sequence or order associated with those words? I doubt it. But if it was a short sentence or tweet, you’d probably be able to rearrange them into their intended order and meaning most of the time.


  Here’s how our token sorter fits into an NLP pipeline right after a tokenizer (see chapter 2). We’ve included a stopword filter as well as a “rare” word filter in our mechanical token sorter sketch. Strings flow in from the top, and bag-of-word vectors are created from the height profile of the token “stacks” at the bottom.


  
    Figure 1.2 Token sorting tray
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  It turns out that machines can handle this bag of words quite well and glean most of the information content of even moderately long documents this way. Each document, after token sorting and counting, can be represented as a vector, a sequence of integers for each word or token in that document. You see a crude example in figure 1.2, and then chapter 2 shows some more useful data structures for bag-of-word vectors.


  This is our first vector space model of a language. Those bins and the numbers they contain for each word are represented as long vectors containing a lot of zeros and a few ones or twos scattered around wherever the word for that bin occurred. All the different ways that words could be combined to create these vectors is called a vector space. And relationships between vectors in this space are what make up our model, which is attempting to predict combinations of these words occurring within a collection of various sequences of words (typically sentences or documents). In Python, we can represent these sparse (mostly empty) vectors (lists of numbers) as dictionaries. And a Python Counter is a special kind of dictionary that bins objects (including strings) and counts them just like we want:

  >>> from collections import Counter
 
>>> Counter("Guten Morgen Rosa".split())
Counter({'Guten': 1, 'Rosa': 1, 'morgen': 1})
>>> Counter("Good morning, Rosa!".split())
Counter({'Good': 1, 'Rosa!': 1, 'morning,': 1})


  You can probably imagine some ways to clean those tokens up. We do just that in the next chapter. But you might also think to yourself that these sparse, high-dimensional vectors (many bins, one for each possible word) aren’t very useful for language processing. But they are good enough for some industry-changing tools like spam filters, which we discuss in chapter 3.


  We can imagine feeding into this machine, one at a time, all the documents, statements, sentences, and even single words we could find. We’d count up the tokens in each slot at the bottom after each of these statements was processed, and we’d call that a vector representation of that statement. All the possible vectors a machine might create this way is called a vector space. And this model of documents and statements and words is called a vector space model. It allows us to use linear algebra to manipulate these vectors and compute things like distances and statistics about natural language statements, which helps us solve a much wider range of problems with less human programming and less brittleness in the NLP pipeline.


  One statistical question that is asked of bag-of-words vector sequences is “What is the combination of words most likely to follow a particular bag of words?” Or, even better, if a user enters a sequence of words, “What is the closest bag of words in our database to a bag-of-words vector provided by the user?” This is a search query. The input words are the words you might type into a search box, and the closest bag-of-words vector corresponds to the document or web page you were looking for. The ability to efficiently answer these two questions would be sufficient to build a machine learning chatbot that could get better and better as we gave it more and more data.


  But wait a minute, perhaps these vectors aren’t like any you’ve ever worked with before. They’re extremely high-dimensional. It’s possible to have millions of dimensions for a 3-gram vocabulary computed from a large corpus. In chapter 3, we discuss the curse of dimensionality and some other properties that make high dimensional vectors difficult to work with.


  
1.5 A brief overflight of hyperspace


  In chapter 3, we show you how to consolidate words into a smaller number of vector dimensions to help mitigate the curse of dimensionality and maybe turn it to our advantage. When we project these vectors onto each other to determine the distance between pairs of vectors, this will be a reasonable estimate of the similarity in their meaning rather than merely their statistical word usage. This vector distance metric is called cosine distance metric, which we talk about in chapter 3, and then reveal its true power on reduced dimension topic vectors in chapter 4. We can even project (“embed” is the more precise term) these vectors in a 2D plane to have a “look” at them in plots and diagrams to see if our human brains can find patterns. We can then teach a computer to recognize and act on these patterns in ways that reflect the underlying meaning of the words that produced those vectors.


  Imagine all the possible tweets or messages or sentences that humans might write. Even though we do repeat ourselves a lot, that’s still a lot of possibilities. And when those tokens are each treated as separate, distinct dimensions, there’s no concept that “Good morning, Hobs” has some shared meaning with “Guten Morgen, Hannes.” We need to create some reduced dimension vector space model of messages so we can label them with a set of continuous (float) values. We could rate messages and words for qualities like subject matter and sentiment. We could ask questions like


  
    	How likely is this message to be a question?


    	How much is it about a person?


    	How much is it about me?


    	How angry or happy does it sound?


    	Is it something I need to respond to?

  


  Think of all the ratings we could give statements. We could put these ratings in order and “compute” them for each statement to compile a “vector” for each statement. The list of ratings or dimensions we could give a set of statements should be much smaller than the number of possible statements. And statements that mean the same thing should have similar values for all our questions.


  These rating vectors become something that a machine can be programmed to react to. We can simplify and generalize vectors further by clumping (clustering) statements together, making them close on some dimensions and not on others.


  But how can a computer assign values to each of these vector dimensions? Well, we simplify our vector dimension questions to things like “Does it contain the word ‘good’?” Does it contain the word “morning?” And so on. You can see that we might be able to come up with a million or so questions resulting in numerical values that a computer could assign to a phrase. This is the first practical vector space model, called a bit vector language model, or the sum of “one-hot encoded” vectors. You can see why computers are just now getting powerful enough to make sense of natural language. The millions of million-dimensional vectors that humans might generate simply “Does not compute!” on a supercomputer of the 80s, but is no problem on a commodity laptop in the 21st century. More than just raw hardware power and capacity made NLP practical; incremental, constant-RAM, linear algebra algorithms were the final piece of the puzzle that allowed machines to crack the code of natural language.


  There’s an even simpler, but much larger representation that can be used in a chatbot. What if our vector dimensions completely described the exact sequence of characters. It would contain the answer to questions like, “Is the first letter an A? Is it a B? ... Is the second letter an A?” and so on. This vector has the advantage that it retains all the information contained in the original text, including the order of the characters and words. Imagine a player piano that could only play a single note at a time, and it had 52 or more possible notes it could play. The “notes” for this natural language mechanical player piano are the 26 uppercase and lowercase letters plus any punctuation that the piano must know how to “play.” The paper roll wouldn’t have to be much wider than for a real player piano, and the number of notes in some long piano songs doesn’t exceed the number of characters in a small document. But this one-hot character sequence encoding representation is mainly useful for recording and then replaying an exact piece rather than composing something new or extracting the essence of a piece. We can’t easily compare the piano paper roll for one song to that of another. And this representation is longer than the original ASCII-encoded representation of the document. The number of possible document representations just exploded in order to retain information about each sequence of characters. We retained the order of characters and words, but expanded the dimensionality of our NLP problem.


  These representations of documents don’t cluster together well in this character-based vector world. The Russian mathematician Vladimir Levenshtein came up with a brilliant approach for quickly finding similarities between sequences (strings of characters) in this world. Levenshtein’s algorithm made it possible to create some surprisingly fun and useful chatbots, with only this simplistic, mechanical view of language. But the real magic happened when we figured out how to compress/embed these higher dimensional spaces into a lower dimensional space of fuzzy meaning or topic vectors. We peek behind the magician’s curtain in chapter 4 when we talk about latent semantic indexing and latent Dirichlet allocation, two techniques for creating much more dense and meaningful vector representations of statements and documents.


  
1.6 Word order and grammar


  The order of words matters. Those rules that govern word order in a sequence of words (like a sentence) are called the grammar of a language. That’s something that our bag of words or word vector discarded in the earlier examples. Fortunately, in most short phrases and even many complete sentences, this word vector approximation works OK. If you just want to encode the general sense and sentiment of a short sentence, word order is not terribly important. Take a look at all these orderings of our “Good morning Rosa” example:

  >>> from itertools import permutations
 
>>> [" ".join(combo) for combo in\
...     permutations("Good morning Rosa!".split(), 3)]
['Good morning Rosa!',
 'Good Rosa! morning',
 'morning Good Rosa!',
 'morning Rosa! Good',
 'Rosa! Good morning',
 'Rosa! morning Good']


  Now if you tried to interpret each of these strings in isolation (without looking at the others), you’d probably conclude that they all probably had similar intent or meaning. You might even notice the capitalization of the word “Good” and place the word at the front of the phrase in your mind. But you might also think that “Good Rosa” was some sort of proper noun, like the name of a restaurant or flower shop. Nonetheless, a smart chatbot or clever woman of the 1940s in Bletchley Park would likely respond to any of these six permutations with the same innocuous greeting, “Good morning my dear General.”


  Let’s try that (in our heads) on a much longer, more complex phrase, a logical statement where the order of the words matters a lot:

  >>> s = """Find textbooks with titles containing 'NLP',
...     or 'natural' and 'language', or
...     'computational' and  'linguistics'."""
>>> len(set(s.split()))
12
>>> import numpy as np
>>> np.arange(1, 12 + 1).prod()  # factorial(12) = arange(1, 13).prod()
479001600


  The number of permutations exploded from factorial(3) == 6 in our simple greeting to factorial(12) == 479001600 in our longer statement! And it’s clear that the logic contained in the order of the words is important to any machine that would like to reply with the correct response. Even though common greetings aren’t usually garbled by bag-of-words processing, more complex statements can lose most of their meaning when thrown into a bag. A bag of words isn’t the best way to begin processing a database query, like the natural language query in the preceding example.


  Whether a statement is written in a formal programming language like SQL, or in an informal natural language like English, word order and grammar are important when a statement intends to convey logical relationships between things. That’s why computer languages depend on rigid grammar and syntax rule parsers. Fortunately, recent advances in natural language syntax tree parsers have made possible the extraction of syntactical and logical relationships from natural language with remarkable accuracy (greater than 90%).[18] In later chapters, we show you how to use packages like SyntaxNet (Parsey McParseface) and SpaCy to identify these relationships.


  And just as in the Bletchley Park example greeting, even if a statement doesn’t rely on word order for logical interpretation, sometimes paying attention to that word order can reveal subtle hints of meaning that might facilitate deeper responses. These deeper layers of natural language processing are discussed in the next section. And chapter 2 shows you a trick for incorporating some of the information conveyed by word order into our word-vector representation. It also shows you how to refine the crude tokenizer used in the previous examples (str.split()) to more accurately bin words into more appropriate slots within the word vector, so that strings like “good” and “Good” are assigned the same bin, and separate bins can be allocated for tokens like “rosa” and “Rosa” but not “Rosa!”.


  
1.7 A chatbot natural language pipeline


  A chatbot requires four kinds of processing as well as a database to maintain a memory of past statements and responses. Each of the four processing stages can contain one or more processing algorithms working in parallel or in series (see figure 1.3):


  
    	
Parse—Extract features, structured numerical data, from natural language text.


    	
Analyze—Generate and combine features by scoring text for sentiment, grammaticality, and semantics.


    	
Generate—Compose possible responses using templates, search, or language models.


    	
Execute—Plan statements based on conversation history and objectives, and select the next response.

  


  Each of these four stages can be implemented using one or more of the algorithms listed within the corresponding boxes in the block diagram. We show you how to use Python to accomplish near state-of-the-art performance for each of these processing steps. And we show you several alternative approaches to implementing these five subsystems.


  
    Figure 1.3 Chatbot recirculating (recurrent) pipeline
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  Most chatbots will contain elements of all five of these subsystems (the four processing stages as well as the database). But many applications require only simple algorithms for many of these steps. Some chatbots are better at answering factual questions, and others are better at generating lengthy, complex, convincingly human responses. Each of these capabilities require different approaches; we show you techniques for both.


  In addition, deep learning and data-driven programming (machine learning, or probabilistic language modeling) have rapidly diversified the possible applications for NLP and chatbots. This data-driven approach allows ever greater sophistication for an NLP pipeline by providing it with greater and greater amounts of data in the domain you want to apply it to. And when a new machine learning approach is discovered that makes even better use of this data, with more efficient model generalization or regularization, then large jumps in capability are possible.


  The NLP pipeline for a chatbot shown in figure 1.3 contains all the building blocks for most of the NLP applications that we described at the start of this chapter. As in Taming Text, we break out our pipeline into four main subsystems or stages. In addition, we’ve explicitly called out a database to record data required for each of these stages and persist their configuration and training sets over time. This can enable batch or online retraining of each of the stages as the chatbot interacts with the world. We’ve also shown a “feedback loop” on our generated text responses so that our responses can be processed using the same algorithms used to process the user statements. The response “scores” or features can then be combined in an objective function to evaluate and select the best possible response, depending on the chatbot’s plan or goals for the dialog. This book is focused on configuring this NLP pipeline for a chatbot, but you may also be able to see the analogy to the NLP problem of text retrieval or “search,” perhaps the most common NLP application. And our chatbot pipeline is certainly appropriate for the question answering application that was the focus of Taming Text.


  The application of this pipeline to financial forecasting or business analytics may not be so obvious. But imagine the features generated by the analysis portion of your pipeline. These features of your analysis or feature generation can be optimized for your particular finance or business prediction. That way they can help you incorporate natural language data into a machine learning pipeline for forecasting. Despite focusing on building a chatbot, this book gives you the tools you need for a broad range of NLP applications, from search to financial forecasting.


  One processing element in figure 1.3 that isn’t typically employed in search, forecasting, or question answering systems is natural language generation. For chatbots this is their central feature. Nonetheless, the text generation step is often incorporated into a search engine NLP application and can give such an engine a large competitive advantage. The ability to consolidate or summarize search results is a winning feature for many popular search engines (DuckDuckGo, Bing, and Google). And you can imagine how valuable it is for a financial forecasting engine to be able to generate statements, tweets, or entire articles based on the business-actionable events it detects in natural language streams from social media networks and news feeds.


  The next section shows how the layers of such a system can be combined to create greater sophistication and capability at each stage of the NLP pipeline.


  
1.8 Processing in depth


  The stages of a natural language processing pipeline can be thought of as layers, like the layers in a feed-forward neural network. Deep learning is all about creating more complex models and behavior by adding additional processing layers to the conventional two-layer machine learning model architecture of feature extraction followed by modeling. In chapter 5, we explain how neural networks help spread the learning across layers by backpropagating model errors from the output layers back to the input layers. But here we talk about the top layers and what can be done by training each layer independently of the other layers.


  The top four layers in figure 1.4 correspond to the first two stages in the chatbot pipeline (feature extraction and feature analysis) in the previous section. For example, the part-of-speech tagging (POS tagging) is one way to generate features within the Analyze stage of our chatbot pipeline. POS tags are generated automatically by the default SpaCY pipeline, which includes all the top four layers in this diagram. POS tagging is typically accomplished with a finite state transducer like the methods in the nltk.tag package.


  
    Figure 1.4 Example layers for an NLP pipeline
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