

Inside front cover

 Chatbot Recirculating (Recurrent) Pipeline

 [image:]

 [image:]

 Natural Language Processing in Action

 Understanding, analyzing, and generating text with Python

 Hobson Lane

 Cole Howard

 Hannes Max Hapke

 Foreword by Dr. Arwen Griffioen

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editor: Brian Sawyer
Development editor: Karen Miller
Technical development editor: René van den Berg
Review editor: Ivan Martinović
Production editor: Anthony Calcara
Copy editor: Darren Meiss
Proofreader: Alyson Brener
Technical proofreader: Davide Cadamuro
Typesetter and cover designer: Marija Tudor

 ISBN 9781617294631

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

 Brief Table of Contents

 Part 1. Wordy machines

 1 Packets of thought (NLP overview)

 2 Build your vocabulary (word tokenization)

 3 Math with words (TF-IDF vectors)

 4 Finding meaning in word counts (semantic analysis)

 Part 2. Deeper learning (neural networks)

 5 Baby steps with neural networks (perceptrons and backpropagation)

 6 Reasoning with word vectors (Word2vec)

 7 Getting words in order with convolutional neural networks (CNNs)

 8 Loopy (recurrent) neural networks (RNNs)

 9 Improving retention with long short-term memory networks

 10 Sequence-to-sequence models and attention

 Part 3. Getting real (real-world NLP challenges)

 11 Information extraction (named entity extraction and question answering)

 12 Getting chatty (dialog engines)

 13 Scaling up (optimization, parallelization, and batch processing)

 Appendix A. Your NLP tools

 Appendix B. Playful Python and regular expressions

 Appendix C. Vectors and matrices (linear algebra fundamentals)

 Appendix D. Machine learning tools and techniques

 Appendix E. Setting up your AWS GPU

 Appendix F. Locality sensitive hashing

 Table of Contents

 Front matter

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the cover Illustration

 Part 1. Wordy machines

 1 Packets of thought (NLP overview)

 1.1 Natural language vs. programming language

 1.2 The magic

 1.2.1 Machines that converse

 1.2.2 The math

 1.3 Practical applications

 1.4 Language through a computer’s “eyes”

 1.4.1 The language of locks

 1.4.2 Regular expressions

 1.4.3 A simple chatbot

 1.4.4 Another way

 1.5 A brief overflight of hyperspace

 1.6 Word order and grammar

 1.7 A chatbot natural language pipeline

 1.8 Processing in depth

 1.9 Natural language IQ

 Summary

 2 Build your vocabulary (word tokenization)

 2.1 Challenges (a preview of stemming)

 2.2 Building your vocabulary with a tokenizer

 2.2.1 Dot product

 2.2.2 Measuring bag-of-words overlap

 2.2.3 A token improvement

 2.2.4 Extending your vocabulary with n-grams

 2.2.5 Normalizing your vocabulary

 2.3 Sentiment

 2.3.1 VADER—A rule-based sentiment analyzer

 2.3.2 Naive Bayes

 Summary

 3 Math with words (TF-IDF vectors)

 3.1 Bag of words

 3.2 Vectorizing

 3.2.1 Vector spaces

 3.3 Zipf’s Law

 3.4 Topic modeling

 3.4.1 Return of Zipf

 3.4.2 Relevance ranking

 3.4.3 Tools

 3.4.4 Alternatives

 3.4.5 Okapi BM25

 3.4.6 What’s next

 Summary

 4 Finding meaning in word counts (semantic analysis)

 4.1 From word counts to topic scores

 4.1.1 TF-IDF vectors and lemmatization

 4.1.2 Topic vectors

 4.1.3 Thought experiment

 4.1.4 An algorithm for scoring topics

 4.1.5 An LDA classifier

 4.2 Latent semantic analysis

 4.2.1 Your thought experiment made real

 4.3 Singular value decomposition

 4.3.1 U—left singular vectors

 4.3.2 S—singular values

 4.3.3 VT—right singular vectors

 4.3.4 SVD matrix orientation

 4.3.5 Truncating the topics

 4.4 Principal component analysis

 4.4.1 PCA on 3D vectors

 4.4.2 Stop horsing around and get back to NLP

 4.4.3 Using PCA for SMS message semantic analysis

 4.4.4 Using truncated SVD for SMS message semantic analysis

 4.4.5 How well does LSA work for spam classification?

 4.5 Latent Dirichlet allocation (LDiA)

 4.5.1 The LDiA idea

 4.5.2 LDiA topic model for SMS messages

 4.5.3 LDiA + LDA = spam classifier

 4.5.4 A fairer comparison: 32 LDiA topics

 4.6 Distance and similarity

 4.7 Steering with feedback

 4.7.1 Linear discriminant analysis

 4.8 Topic vector power

 4.8.1 Semantic search

 4.8.2 Improvements

 Summary

 Part 2. Deeper learning (neural networks)

 5 Baby steps with neural networks (perceptrons and backpropagation)

 5.1 Neural networks, the ingredient list

 5.1.1 Perceptron

 5.1.2 A numerical perceptron

 5.1.3 Detour through bias

 5.1.4 Let’s go skiing—the error surface

 5.1.5 Off the chair lift, onto the slope

 5.1.6 Let’s shake things up a bit

 5.1.7 Keras: Neural networks in Python

 5.1.8 Onward and deepward

 5.1.9 Normalization: input with style

 Summary

 6 Reasoning with word vectors (Word2vec)

 6.1 Semantic queries and analogies

 6.1.1 Analogy questions

 6.2 Word vectors

 6.2.1 Vector-oriented reasoning

 6.2.2 How to compute Word2vec representations

 6.2.3 How to use the gensim.word2vec module

 6.2.4 How to generate your own word vector representations

 6.2.5 Word2vec vs. GloVe (Global Vectors)

 6.2.6 fastText

 6.2.7 Word2vec vs. LSA

 6.2.8 Visualizing word relationships

 6.2.9 Unnatural words

 6.2.10. Document similarity with Doc2vec

 Summary

 7 Getting words in order with convolutional neural networks (CNNs)

 7.1 Learning meaning

 7.2 Toolkit

 7.3 Convolutional neural nets

 7.3.1 Building blocks

 7.3.2 Step size (stride)

 7.3.3 Filter composition

 7.3.4 Padding

 7.3.5 Learning

 7.4 Narrow windows indeed

 7.4.1 Implementation in Keras: prepping the data

 7.4.2 Convolutional neural network architecture

 7.4.3 Pooling

 7.4.4 Dropout

 7.4.5 The cherry on the sundae

 7.4.6 Let’s get to learning (training)

 7.4.7 Using the model in a pipeline

 7.4.8 Where do you go from here?

 Summary

 8 Loopy (recurrent) neural networks (RNNs)

 8.1 Remembering with recurrent networks

 8.1.1 Backpropagation through time

 8.1.2 When do we update what?

 8.1.3 Recap

 8.1.4 There’s always a catch

 8.1.5 Recurrent neural net with Keras

 8.2 Putting things together

 8.3 Let’s get to learning our past selves

 8.4 Hyperparameters

 8.5 Predicting

 8.5.1 Statefulness

 8.5.2 Two-way street

 8.5.3 What is this thing?

 Summary

 9 Improving retention with long short-term memory networks

 9.1 LSTM

 9.1.1 Backpropagation through time

 9.1.2 Where does the rubber hit the road?

 9.1.3 Dirty data

 9.1.4 Back to the dirty data

 9.1.5 Words are hard. Letters are easier.

 9.1.6 My turn to chat

 9.1.7 My turn to speak more clearly

 9.1.8 Learned how to say, but not yet what

 9.1.9 Other kinds of memory

 9.1.10. Going deeper

 Summary

 10 Sequence-to-sequence models and attention

 10.1 Encoder-decoder architecture

 10.1.1 Decoding thought

 10.1.2 Look familiar?

 10.1.3 Sequence-to-sequence conversation

 10.1.4 LSTM review

 10.2 Assembling a sequence-to-sequence pipeline

 10.2.1 Preparing your dataset for the sequence-to-sequence training

 10.2.2 Sequence-to-sequence model in Keras

 10.2.3 Sequence encoder

 10.2.4 Thought decoder

 10.2.5 Assembling the sequence-to-sequence network

 10.3 Training the sequence-to-sequence network

 10.3.1 Generate output sequences

 10.4 Building a chatbot using sequence-to-sequence networks

 10.4.1 Preparing the corpus for your training

 10.4.2 Building your character dictionary

 10.4.3 Generate one-hot encoded training sets

 10.4.4 Train your sequence-to-sequence chatbot

 10.4.5 Assemble the model for sequence generation

 10.4.6 Predicting a sequence

 10.4.7 Generating a response

 10.4.8 Converse with your chatbot

 10.5 Enhancements

 10.5.1 Reduce training complexity with bucketing

 10.5.2 Paying attention

 10.6 In the real world

 Summary

 Part 3. Getting real (real-world NLP challenges)

 11 Information extraction (named entity extraction and question answering)

 11.1 Named entities and relations

 11.1.1 A knowledge base

 11.1.2 Information extraction

 11.2 Regular patterns

 11.2.1 Regular expressions

 11.2.2 Information extraction as ML feature extraction

 11.3 Information worth extracting

 11.3.1 Extracting GPS locations

 11.3.2 Extracting dates

 11.4 Extracting relationships (relations)

 11.4.1 Part-of-speech (POS) tagging

 11.4.2 Entity name normalization

 11.4.3 Relation normalization and extraction

 11.4.4 Word patterns

 11.4.5 Segmentation

 11.4.6 Why won’t split('.!?') work?

 11.4.7 Sentence segmentation with regular expressions

 11.5 In the real world

 Summary

 12 Getting chatty (dialog engines)

 12.1 Language skill

 12.1.1 Modern approaches

 12.1.2 A hybrid approach

 12.2 Pattern-matching approach

 12.2.1 A pattern-matching chatbot with AIML

 12.2.2 A network view of pattern matching

 12.3 Grounding

 12.4 Retrieval (search)

 12.4.1 The context challenge

 12.4.2 Example retrieval-based chatbot

 12.4.3 A search-based chatbot

 12.5 Generative models

 12.5.1 Chat about NLPIA

 12.5.2 Pros and cons of each approach

 12.6 Four-wheel drive

 12.6.1 The Will to succeed

 12.7 Design process

 12.8 Trickery

 12.8.1 Ask questions with predictable answers

 12.8.2 Be entertaining

 12.8.3 When all else fails, search

 12.8.4 Being popular

 12.8.5 Be a connector

 12.8.6 Getting emotional

 12.9 In the real world

 Summary

 13 Scaling up (optimization, parallelization, and batch processing)

 13.1 Too much of a good thing (data)

 13.2 Optimizing NLP algorithms

 13.2.1 Indexing

 13.2.2 Advanced indexing

 13.2.3 Advanced indexing with Annoy

 13.2.4 Why use approximate indexes at all?

 13.2.5 An indexing workaround: discretizing

 13.3 Constant RAM algorithms

 13.3.1 Gensim

 13.3.2 Graph computing

 13.4 Parallelizing your NLP computations

 13.4.1 Training NLP models on GPUs

 13.4.2 Renting vs. buying

 13.4.3 GPU rental options

 13.4.4 Tensor processing units

 13.5 Reducing the memory footprint during model training

 13.6 Gaining model insights with TensorBoard

 13.6.1 How to visualize word embeddings

 Summary

 Appendix A. Your NLP tools

 A.1 Anaconda3

 A.2 Install NLPIA

 A.3 IDE

 A.4 Ubuntu package manager

 A.5 Mac

 A.5.1 A Mac package manager

 A.5.2 Some packages

 A.5.3 Tuneups

 A.6 Windows

 A.6.1 Get Virtual

 A.7 NLPIA automagic

 Appendix B. Playful Python and regular expressions

 B.1 Working with strings

 B.1.1 String types (str and bytes)

 B.1.2 Templates in Python (.format())

 B.2 Mapping in Python (dict and OrderedDict)

 B.3 Regular expressions

 B.3.1 |—OR

 B.3.2 ()—Groups

 B.3.3 []—Character classes

 B.4 Style

 B.5 Mastery

 Appendix C. Vectors and matrices (linear algebra fundamentals)

 C.1 Vectors

 C.1.1 Distances

 Appendix D. Machine learning tools and techniques

 D.1 Data selection and avoiding bias

 D.2 How fit is fit?

 D.3 Knowing is half the battle

 D.4 Cross-fit training

 D.5 Holding your model back

 D.5.1 Regularization

 D.5.2 Dropout

 D.5.3 Batch normalization

 D.6 Imbalanced training sets

 D.6.1 Oversampling

 D.6.2 Undersampling

 D.6.3 Augmenting your data

 D.7 Performance metrics

 D.7.1 Measuring classifier performance

 D.7.2 Measuring regressor performance

 D.8 Pro tips

 Appendix E. Setting up your AWS GPU

 E.1 Steps to create your AWS GPU instance

 E.1.1 Cost control

 Appendix F. Locality sensitive hashing

 F.1 High-dimensional vectors are different

 F.1.1 Vector space indexes and hashes

 F.1.2 High-dimensional thinking

 F.2 High-dimensional indexing

 F.2.1 Locality sensitive hashing

 F.2.2 Approximate nearest neighbors

 F.3 “Like” prediction

 Resources

 Applications and project ideas

 Courses and tutorials

 Tools and packages

 Research papers and talks

 Vector space models and semantic search

 Finance

 Question answering systems

 Deep learning

 LSTMs and RNNs

 Competitions and awards

 Datasets

 Search engines

 Search algorithms

 Open source search engines

 Open source full-text indexers

 Manipulative search engines

 Less manipulative search engines

 Distributed search engines

 Glossary

 Acronyms

 Terms

 Index

 List of Figures

 List of Tables

 List of Listings

 Front matter

 Foreword

 I first met Hannes in 2006 when we started different post-graduate degrees in the same department. He quickly became known for his work leveraging the union of machine learning and electrical engineering and, in particular, a strong commitment to having a positive world impact. Throughout his career, this commitment has guided each company and project he has touched, and it was by following this internal compass that he connected with Hobson and Cole, who share similar passion for projects with a strong positive impact.

 When approached to write this foreword, it was this passion for the application of machine learning (ML) for good that persuaded me. My personal journey in machine learning research was similarly guided by a strong desire to have a positive impact on the world. My path led me to develop algorithms for multi-resolution modeling ecological data for species distributions in order to optimize conservation and survey goals. I have since been determined to continue working in areas where I can improve lives and experiences through the application of machine learning.

 With great power comes great responsibility.

 —Voltaire?

 Whether you attribute these words to Voltaire or Uncle Ben, they hold as true today as ever, though perhaps in this age we could rephrase to say, “With great access to data comes great responsibility.” We trust companies with our data in the hope that it is used to improve our lives. We allow our emails to be scanned to help us compose more grammatically correct emails; snippets of our daily lives on social media are studied and used to inject advertisements into our feeds. Our phones and homes respond to our words, sometimes when we are not even talking to them. Even our news preferences are monitored so that our interests, opinions, and beliefs are indulged. What is at the heart of all these powerful technologies?

 The answer is natural language processing. In this book you will learn both the theory and practical skills needed to go beyond merely understanding the inner workings of these systems, and start creating your own algorithms or models. Fundamental computer science concepts are seamlessly translated into a solid foundation for the approaches and practices that follow. Taking the reader on a clear and well-narrated tour through the core methodologies of natural language processing, the authors begin with tried and true methods, such as TF-IDF, before taking a shallow but deep (yes, I made a pun) dive into deep neural networks for NLP.

 Language is the foundation upon which we build our shared sense of humanity. We communicate not just facts, but emotions; through language we acquire knowledge outside of our realm of experience, and build understanding through sharing those experiences. You have the opportunity to develop a solid understanding, not just of the mechanics of NLP, but the opportunities to generate impactful systems that may one day understand humankind through our language. The technology of NLP has great potential for misuse, but also great potential for good. Through sharing their knowledge, via this book, the authors hope to tip us towards a brighter future.

 DR. ARWEN GRIFFIOEN

 SENIOR DATA SCIENTIST - RESEARCH

 ZENDESK

 Preface

 Around 2013, natural language processing and chatbots began dominating our lives. At first Google Search had seemed more like an index, a tool that required a little skill in order to find what you were looking for. But it soon got smarter and would accept more and more natural language searches. Then smart phone autocomplete began to get sophisticated. The middle button was often exactly the word you were looking for.[1]

 In late 2014, Thunder Shiviah and I were collaborating on a Hack Oregon project to mine natural language campaign finance data. We were trying to find connections between political donors. It seemed politicians were hiding their donors’ identities behind obfuscating language in their campaign finance filings. The interesting thing wasn’t that we were able to use simple natural language processing techniques to uncover these connections. What surprised me the most was that Thunder would often respond to my rambling emails with a succinct but apt reply seconds after I hit send on my email. He was using Smart Reply, a Gmail Inbox “assistant” that composes replies faster than you can read your email.

 So I dug deeper, to learn the tricks behind the magic. The more I learned, the more these impressive natural language processing feats seemed doable, understandable. And nearly every machine learning project I took on seemed to involve natural language processing.

 Perhaps this was because of my fondness for words and fascination with their role in human intelligence. I would spend hours debating whether words even have “meaning” with John Kowalski, my information theorist boss at Sharp Labs. As I gained confidence, and learned more and more from my mentors and mentees, it seemed like I might be able to build something new and magical myself.

 One of the tricks I learned was to iterate through a collection of documents and count how often words like “War” and “Hunger” are followed by words like “Games” or “III.” If you do that for a large collection of texts, you can get pretty good at guessing the right word in a “chain” of words, a phrase, or sentence. This classical approach to language processing was intuitive to me.

 Professors and bosses called this a Markov chain, but to me it was just a table of probabilities. It was just a list of the counts of each word, based on the preceding word. Professors would call this a conditional distribution, probabilities of words conditioned on the preceding word. The spelling corrector that Peter Norvig built for Google showed how this approach scales well and takes very little Python code.[2] All you need is a lot of natural language text. I couldn’t help but get excited as I thought about the possibilities for doing such a thing on massive free collections of text like Wikipedia or the Gutenberg Project.[3].

 Then I heard about latent semantic analysis (LSA). It seemed to be just a fancy way of describing some linear algebra operations I’d learned in college. If you keep track of all the words that occur together, you can use linear algebra to group those words into “topics.” LSA could compress the meaning of an entire sentence or even a long document into a single vector. And, when used in a search engine, LSA seemed to have an uncanny ability to return documents that were exactly what I was looking for. Good search engines would do this even when I couldn’t think of the words that might be in those documents!

 Then gensim released a Python implementation of Word2vec word vectors, making it possible to do semantic math with individual words. And it turned out that this fancy neural network math was equivalent to the old LSA technique if you just split up the documents into smaller chunks. This was an eye-opener. It gave me hope that I might be able to contribute to the field. I’d been thinking about hierarchical semantic vectors for years—how books are made of chapters of paragraphs of sentences of phrases of words of characters. Tomas Mikolov, the Word2vec inventor, had the insight that the dominant semantics of text could be found in the connection between two layers of the hierarchy, between words and 10-word phrases. For decades, NLP researchers had been thinking of words as having components, like niceness and emotional intensity. And these sentiment scores, components, could be added and subtracted to combine the meanings of multiple words. But Mikolov had figured out how to create these vectors without hand-crafting them, or even defining what the components should be. This made NLP fun!

 About that time, Thunder introduced me to his mentee, Cole. And later others introduced me to Hannes. So the three of us began to “divide and conquer” the field of NLP. I was intrigued by the possibility of building an intelligent-sounding chatbot. Cole and Hannes were inspired by the powerful black boxes of neural nets. Before long they were opening up the black box, looking inside and describing what they found to me. Cole even used it to build chatbots, to help me out in my NLP journey.

 Each time we dug into some amazing new NLP approach it seemed like something I could understand and use. And there seemed to be a Python implementation for each new technique almost as soon as it came out. The data and pretrained models we needed were often included with these Python packages. “There’s a package for that” became a common refrain on Sunday afternoons at Floyd’s Coffee Shop where Hannes, Cole, and I would brainstorm with friends or play Go and the “middle button game.” So we made rapid progress and started giving talks and lectures to Hack Oregon classes and teams.

 In 2015 and 2016 things got more serious. As Microsoft’s Tay and other bots began to run amok, it became clear that natural language bots were influencing society. In 2016 I was busy testing a bot that vacuumed up tweets in an attempt to forecast elections. At the same time, news stories were beginning to surface about the effect of Twitter bots on the US presidential election. In 2015 I had learned of a system used to predict economic trends and trigger large financial transactions based only on the “judgment” of algorithms about natural language text.[4] These economy-influencing and society-shifting algorithms had created an amplifier feedback loop. “Survival of the fittest” for these algorithms appeared to favor the algorithms that generated the most profits. And those profits often came at the expense of the structural foundations of democracy. Machines were influencing humans, and we humans were training them to use natural language to increase their influence. Obviously these machines were under the control of thinking and introspective humans, but when you realize that those humans are being influenced by the bots, the mind begins to boggle. Could those bots result in a runaway chain reaction of escalating feedback? Perhaps the initial conditions of those bots could have a big effect on whether that chain reaction was favorable or unfavorable to human values and concerns.

 Then Brian Sawyer at Manning Publishing came calling. I knew immediately what I wanted to write about and who I wanted to help me. The pace of development in NLP algorithms and aggregation of natural language data continued to accelerate as Cole, Hannes, and I raced to keep up.

 The firehose of unstructured natural language data about politics and economics helped NLP become a critical tool in any campaign or finance manager’s toolbox. It’s unnerving to realize that some of the articles whose sentiment is driving those predictions are being written by other bots. These bots are often unaware of each other. The bots are literally talking to each other and attempting to manipulate each other, while the health of humans and society as a whole seems to be an afterthought. We’re just along for the ride.

 One example of this cycle of bots talking to bots is illustrated by the rise of fintech startup Banjo in 2015.[5] By monitoring Twitter, Banjo’s NLP could predict newsworthy events 30 minutes to an hour before the first Reuters or CNN reporter filed a story. Many of the tweets it was using to detect those events would have almost certainly been favorited and retweeted by several other bots with the intent of catching the “eye” of Banjo’s NLP bot. And the tweets being favorited by bots and monitored by Banjo weren’t just curated, promoted, or metered out according to machine learning algorithms driven by analytics. Many of these tweets were written entirely by NLP engines.[6]

 More and more entertainment, advertisement, and financial reporting content generation can happen without requiring a human to lift a finger. NLP bots compose entire movie scripts.[7] Video games and virtual worlds contain bots that converse with us, sometimes talking about bots and AI themselves. This “play within a play” will get ever more “meta” as movies about video games and then bots in the real world write reviews to help us decide which movies to watch. Authorship attribution will become harder and harder as natural language processing can dissect natural language style and generate text in that style.[8]

 NLP influences society in other less straightforward ways. NLP enables efficient information retrieval (search), and being a good filter or promoter of some pages affects the information we consume. Search was the first commercially successful application of NLP. Search powered faster and faster development of NLP algorithms, which then improved search technology itself. We help you contribute to this virtuous cycle of increasing collective brain power by showing you some of the natural language indexing and prediction techniques behind web search. We show you how to index this book so that you can free your brain to do higher-level thinking, allowing machines to take care of memorizing the terminology, facts, and Python snippets here. Perhaps then you can influence your own culture for yourself and your friends with your own natural language search tools.

 The development of NLP systems has built to a crescendo of information flow and computation through and among human brains. We can now type only a few characters into a search bar, and often retrieve the exact piece of information we need to complete whatever task we’re working on, like writing the software for a textbook on NLP. The top few autocomplete options are often so uncannily appropriate that we feel like we have a human assisting us with our search. Of course we authors used various search engines throughout the writing of this textbook. In some cases these search results included social posts and articles curated or written by bots, which in turn inspired many of the NLP explanations and applications in the following pages.

 What is driving NLP advances?

 	A new appreciation for the ever-widening web of unstructured data?

 	Increases in processing power catching up with researchers’ ideas?

 	The efficiency of interacting with a machine in our own language?

 It’s all of the above and much more. You can enter the question “Why is natural language processing so important right now?” into any search engine,[9] and find the Wikipedia article full of good reasons.[10]

 There are also some deeper reasons. One such reason is the accelerating pursuit of artificial general intelligence (AGI), or Deep AI. Human intelligence may only be possible because we are able to collect thoughts into discrete packets of meaning that we can store (remember) and share efficiently. This allows us to extend our intelligence across time and geography, connecting our brains to form a collective intelligence.

 One of the ideas in Steven Pinker’s The Stuff of Thought is that we actually think in natural language.[11] It’s not called an “inner dialog” without reason. Facebook, Google, and Elon Musk are betting on the fact that words will be the default communication protocol for thought. They have all invested in projects that attempt to translate thought, brain waves, and electrical signals into words.[12] In addition, the Sapir-Whorf hypothesis is that words affect the way we think.[13] And natural language certainly is the communication medium of culture and the collective consciousness.

 So if it’s good enough for human brains, and we’d like to emulate or simulate human thought in a machine, then natural language processing is likely to be critical. Plus there may be important clues to intelligence hidden in the data structures and nested connections between words that you’re going to learn about in this book. After all, you’re going to use these structures, and connection networks make it possible for an inanimate system to digest, store, retrieve, and generate natural language in ways that sometimes appear human.

 And there’s another even more important reason why you might want to learn how to program a system that uses natural language well... you might just save the world. Hopefully you’ve been following the discussion among movers and shakers about the AI Control Problem and the challenge of developing “Friendly AI.”[14] Nick Bostrom,[15] Calum Chace,[16] Elon Musk,[17] and many others believe that the future of humanity rests on our ability to develop friendly machines. And natural language is going to be an important connection between humans and machines for the foreseeable future.

 Even once we are able to “think” directly to/with machines, those thoughts will likely be shaped by natural words and languages within our brains. The line between natural and machine language will be blurred just as the separation between man and machine fades. In fact this line began to blur in 1984. That’s the year of the Cyborg Manifesto,[18] making George Orwell’s dystopian predictions both more likely and easier for us to accept.[19], [20]

 Hopefully the phrase “help save the world” didn’t leave you incredulous. As you progress through this book, we show you how to build and connect several lobes of a chatbot “brain.” As you do this, you’ll notice that very small nudges to the social feedback loops between humans and machines can have a profound effect, both on the machines and on humans. Like a butterfly flapping its wings in China, one small decimal place adjustment to your chatbot’s “selfishness” gain can result in a chaotic storm of antagonistic chatbot behavior and conflict.[21] And you’ll also notice how a few kind, altruistic systems will quickly gather a loyal following of supporters that help quell the chaos wreaked by shortsighted bots—bots that pursue “objective functions” targeting the financial gain of their owners. Prosocial, cooperative chatbots can have an outsized impact on the world, because of the network effect of prosocial behavior.[22]

 This is how and why the authors of this book came together. A supportive community emerged through open, honest, prosocial communication over the internet using the language that came naturally to us. And we’re using our collective intelligence to help build and support other semi-intelligent actors (machines).[23] We hope that our words will leave their impression in your mind and propagate like a meme through the world of chatbots, infecting others with passion for building prosocial NLP systems. And we hope that when superintelligence does eventually emerge, it will be nudged, ever so slightly, by this prosocial ethos.

 Acknowledgments

 Assembling this book and the software to make it live would not have been possible without a supportive network of talented developers, mentors, and friends. These contributors came from a vibrant Portland community sustained by organizations like PDX Python, Hack Oregon, Hack University, Civic U, PDX Data Science, Hopester, PyDX, PyLadies, and Total Good.

 Kudos to Zachary Kent who designed, built, and maintained openchat (PyCon Open Spaces Twitter bot) and Riley Rustad who prototyped its data schema as the book and our skills progressed. Santi Adavani implemented named entity recognition using the Stanford CoreNLP library, developed tutorials for SVD and PCA, and supported us with access to his RocketML HPC framework to train a real-time video description model for people who are blind. Eric Miller allocated some of Squishy Media’s resources to bootstrap Hobson’s NLP visualization skills. Erik Larson and Aleck Landgraf generously gave Hobson and Hannes leeway to experiment with machine learning and NLP at their startup.

 Anna Ossowski helped design the PyCon Open Spaces Twitter bot and then shepherded it through its early days of learning to help it tweet responsibly. Chick Wells cofounded Total Good, developed a clever and entertaining IQ Test for chatbots, and continuously supported us with his devops expertise. NLP experts, like Kyle Gorman, generously shared their time, NLP expertise, code, and precious datasets with us. Catherine Nikolovski shared her Hack Oregon and Civic U community and resources. Chris Gian contributed his NLP project ideas to the examples in this book, and valiantly took over as instructor for the Civic U Machine Learning class when the teacher bailed halfway through the climb. You’re a Sky Walker. Rachel Kelly gave us the exposure and support we needed during the early stages of material development. Thunder Shiviah provided constant inspiration through his tireless teaching and boundless enthusiasm for machine learning and life.

 Molly Murphy and Natasha Pettit at Hopester are responsible for giving us a cause, inspiring the concept of a prosocial chatbot. Jeremy Robin and the Talentpair crew provided valuable software engineering feedback and helped to bring some concepts mentioned in this book to life. Dan Fellin helped kickstart our NLP adventures with teaching assistance at the PyCon 2016 tutorial and a Hack University class on Twitter scraping. Aira’s Alex Rosengarten, Enrico Casini, Rigoberto Macedo, Charlina Hung, and Ashwin Kanan “mobilized” the chatbot concepts in this book with an efficient, reliable, maintainable dialog engine and microservice. Thank you, Ella and Wesley Minton, for being our guinea pigs as you experimented with our crazy chatbot ideas while learning to write your first Python programs. Suman Kanuganti and Maria MacMullin had the vision to found “Do More Foundation” to make Aira’s visual interpreter affordable for students. Thank you, Clayton Lewis, for keeping me engaged in his cognitive assistance research, even when I had only enthusiasm and hacky code to bring to the table for his workshop at the Coleman Institute.

 Some of the work discussed in this book was supported by the National Science Foundation (NSF) grant 1722399 to Aira Tech Corp. Any opinions, findings, and recommendations expressed in this book are those of the authors and do not necessarily reflect the views of the organizations or individuals acknowledged here.

 Finally, we would like to thank everyone at Manning Publications for their hard work, as well as Dr. Arwen Griffioen for contributing the foreword, Dr. Davide Cadamuro for his technical review, and all our reviewers, whose feedback and help improving our book added significantly to our collective intelligence: Chung-Yao Chuang, Fradj Zayen, Geoff Barto, Jared Duncan, Mark Miller, Parthasarathy Mandayam, Roger Meli, Shobha Iyer, Simona Russo, Srdjan Santic, Tommaso Teofili, Tony Mullen, Vladimir Kuptsov, William E. Wheeler, and Yogesh Kulkarni.

Hobson Lane

 I’m eternally grateful to my mother and father for filling me with delight at words and math. To Larissa Lane, the most intrepid adventurer I know, I’m forever in your debt for your help in achieving two lifelong dreams, sailing the world and writing a book.

 To Arzu Karaer I’m forever in debt to you for your grace and patience in helping me pick up the pieces of my broken heart, reaffirming my faith in humanity, and ensuring this book maintained its hopeful message.

Hannes Max Hapke

 I owe many thanks to my partner, Whitney, who supported me endlessly in this endeavor. Thank you for your advice and feedback. I also would like to thank my family, especially my parents, who encouraged me to venture out into the world to discover it. All this work wouldn’t have been possible without them. All of my life adventures wouldn’t have been possible without the brave men and women changing the world on a November night in '89. Thank you for your bravery.

Cole Howard

 I would like to thank my wife, Dawn. Her superhuman patience and understanding is truly an inspiration. And my mother, for the freedom to experiment and the encouragement to always be learning.

 About this Book

 Natural Language Processing in Action is a practical guide to processing and generating natural language text in the real world. In this book we provide you with all the tools and techniques you need to build the backend NLP systems to support a virtual assistant (chatbot), spam filter, forum moderator, sentiment analyzer, knowledge base builder, natural language text miner, or nearly any other NLP application you can imagine.

 Natural Language Processing in Action is aimed at intermediate to advanced Python developers. Readers already capable of designing and building complex systems will also find most of this book useful, since it provides numerous best-practice examples and insight into the capabilities of state-of-the art NLP algorithms. While knowledge of object-oriented Python development may help you build better systems, it’s not required to use what you learn in this book.

 For special topics, we provide sufficient background material and cite resources (both text and online) for those who want to gain an in-depth understanding.

Roadmap

 If you are new to Python and natural language processing, you should first read part 1 and then any of the chapters of part 3 that apply to your interests or on-the-job challenges. If you want to get up to speed on the new NLP capabilities that deep learning enables, you’ll also want to read part 2, in order. It builds your understanding of neural networks, incrementally ratcheting up the complexity and capability of those neural nets.

 As soon as you find a chapter or section with a snippet that you can “run in your head,” you should run it for real on your machine. And if any of the examples look like they might run on your own text documents, you should put that text into a CSV or text file (one document per line) in the nlpia/src/nlpia/data/ directory. Then you can use the nlpia.data.loaders.get_data() function to retrieve that data and run the examples on your own data.

About this book

 The chapters of part 1 deal with the logistics of working with natural language and turning it into numbers that can be searched and computed. This “blocking and tackling” of words comes with the reward of some surprisingly useful applications such as information retrieval and sentiment analysis. Once you master the basics, you’ll find that some very simple arithmetic, computed over and over and over in a loop, can solve some pretty important problems, such as spam filtering. Spam filters of the type you’ll build in chapters 2 through 4 are what saved the global email system from anarchy and stagnation. You’ll learn how to build a spam filter with better than 90% accuracy using 1990s era technology—calculating nothing more than the counts of words and some simple averages of those counts.

 All this math with words may sound tedious, but it’s actually quite fun. Very quickly you’ll be able to build algorithms that can make decisions about natural language as well or better than you can (and certainly much faster). This may be the first time in your life that you have the perspective to fully appreciate the way that words reflect and empower your thinking. The high-dimensional vector-space view of words and thoughts will hopefully leave your brain spinning in recurrent loops of self-discovery.

 That crescendo of learning may reach a high point toward the middle of this book. The core of this book in part 2 will be your exploration of the complicated web of computation and communication within neural networks. The network effect of small logical units interacting in a web of “thinking” has empowered machines to solve problems that only smart humans even bothered to attempt in the past, things such as analogy questions, text summarization, and translation between natural languages.

 Yes, you’ll learn about word vectors, don’t worry, but oh so much more. You’ll be able to visualize words, documents, and sentences in a cloud of connected concepts that stretches well beyond the three dimensions you can readily grasp. You’ll start thinking of documents and words like a Dungeons and Dragons character sheet with a myriad of randomly selected characteristics and abilities that have evolved and grown over time, but only in our heads.

 An appreciation for this intersubjective reality of words and their meaning will be the foundation for the coup-de-grace of part 3, where you learn how to build machines that converse and answer questions as well as humans.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The source code for all listings in this book is available for download from the Manning website at https://www.manning.com/books/natural-language-processing-in-action and from GitHub at https://github.com/totalgood/nlpia.

liveBook discussion forum

 Purchase of Natural Language Processing in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum, go to https://livebook.manning.com/#!/book/natural-language-processing-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 About the Authors

 	
 [image:]

 	
 HOBSON LANE has 20 years of experience building autonomous systems that make important decisions on behalf of humans. At Talentpair Hobson taught machines to read and understand resumes with less bias than most recruiters. At Aira he helped build their first chatbot to interpret the visual world for those who are blind. Hobson is passionate about openness and prosocial AI. He’s an active contributor to open source projects such as Keras, scikit-learn, PyBrain, PUGNLP, and ChatterBot. He’s currently pursuing open science research and education projects for Total Good including building an open source cognitive assistant. He has published papers and presented talks at AIAA, PyCon, PAIS, and IEEE and has been awarded several patents in Robotics and Automation.

 	
 [image:]

 	
 HANNES MAX HAPKE is an electrical engineer turned machine learning engineer. He became fascinated with neural networks in high school while investigating ways to compute neural networks on micro-controllers. Later in college, he applied concepts of neural nets to control renewable energy power plants effectively. Hannes loves to automate software development and machine learning pipelines. He co-authored deep learning models and machine learning pipelines for recruiting, energy, and healthcare applications. Hannes presented on machine learning at various conferences including OSCON, Open Source Bridge, and Hack University.

 	
 [image:]

 	
 COLE HOWARD is a machine learning engineer, NLP practitioner, and writer. A lifelong hunter of patterns, he found his true home in the world of artificial neural networks. He has developed large-scale e-commerce recommendation engines and state-of-the-art neural nets for hyperdimensional machine intelligence systems (deep learning neural nets), which perform at the top of the leader board for the Kaggle competitions. He has presented talks on Convolutional Neural Nets, Recurrent Neural Nets, and their roles in natural language processing at the Open Source Bridge Conference and Hack University.

 About the cover Illustration

 The figure on the cover of Natural Language Processing in Action is captioned “Woman from Kranjska Gora, Slovenia.” This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wends, Illyrians, and Slavs, published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist who spent many years studying the botany, geology, and ethnography of the Julian Alps, the mountain range that stretches from northeastern Italy to Slovenia and that is named after Julius Caesar. Hand drawn illustrations accompany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of the eastern Alpine regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified people uniquely as belonging to one or the other, and when members of a social class or trade could be easily distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another, and today the inhabitants of the picturesque towns and villages in the Slovenian Alps are not readily distinguishable from the residents of other parts of Slovenia or the rest of Europe.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

 1 Hit the middle button (https://www.reddit.com/r/ftm/comments/2zkwrs/middle_button_game/:) repeatedly on a smart phone predictive text keyboard to learn what Google thinks you want to say next. It was first introduced on Reddit as the “SwiftKey game” (https://blog.swiftkey.com/swiftkey-game-winning-is/) in 2013.

 2 See the web page titled “How to Write a Spelling Corrector” by Peter Norvig (http://www.norvig.com/spell-correct.html).

 3 If you appreciate the importance of having freely accessible books of natural language, you may want to keep abreast of the international effort to extend copyrights far beyond their original “use by” date: gutenberg.org (http://www.gutenberg.org) and gutenbergnews.org (http://www.gutenbergnews.org/20150208/copyrightterm-extensions-are-looming:)

 4 See the web page titled “Why Banjo Is the Most Important Social Media Company You’ve Never Heard Of” (https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html).

 5 Banjo, https://www.inc.com/magazine/201504/will-bourne/banjo-the-gods-eye-view.html

 6 The 2014 financial report by Twitter revealed that >8% of tweets were composed by bots, and in 2015 DARPA held a competition (https://arxiv.org/ftp/arxiv/papers/1601/1601.05140.pdf) to try to detect them and reduce their influence on society in the US.

 7 Five Thirty Eight, http://fivethirtyeight.com/features/some-like-it-bot/

 8 NLP has been used successfully to help quantify the style of 16th century authors like Shakespeare (https://pdfs.semanticscholar.org/3973/ff27eb173412ce532c8684b950f4cd9b0dc8.pdf).

 9 Duck Duck Go query about NLP (https://duckduckgo.com/?q=Why+is+natural+language+processing+so+important+right+now:)

 10 See the Wikipedia article “Natural language processing” (https://en.wikipedia.org/wiki/Natural_language_processingWikipedia/NLP).

 11 Steven Pinker, https://en.wikipedia.org/wiki/The_Stuff_of_Thought

 12 See the Wired Magazine Article “We are Entering the Era of the Brain Machine Interface” (https://backchannel.com/we-are-entering-the-era-of-the-brain-machine-interface-75a3a1a37fd3).

 13 See the web page titled “Linguistic relativity” (https://en.wikipedia.org/wiki/Linguistic_relativity).

 14 Wikipedia, AI Control Problem, https://en.wikipedia.org/wiki/AI_control_problem

 15 Nick Bostrom, home page, http://nickbostrom.com/

 16 Calum Chace, Surviving AI, https://www.singularityweblog.com/calum-chace-on-surviving-ai/

 17 See the web page titled “Why Elon Musk Spent $10 Million To Keep Artificial Intelligence Friendly” (http://www.forbes.com/sites/ericmack/2015/01/15/elon-musk-puts-down-10-million-to-fight-skynet/#17f7ee7b4bd0).

 18 Haraway, Cyborg Manifesto, https://en.wikipedia.org/wiki/A_Cyborg_Manifesto

 19 Wikipedia on George Orwell’s 1984, https://en.wikipedia.org/wiki/Nineteen_Eighty-Four

 20 Wikipedia, The Year 1984, https://en.wikipedia.org/wiki/1984

 21 A chatbot’s main tool is to mimic the humans it is conversing with. So dialog participants can use that influence to engender both prosocial and antisocial behavior in bots. See the Tech Republic article “Why Microsoft’s Tay AI Bot Went Wrong” (http://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong).

 22 An example of autonomous machines “infecting” humans with their measured behavior can be found in studies of the impact self-driving cars are likely to have on rush-hour traffic (https://www.enotrans.org/wp-content/uploads/AV-paper.pdf). In some studies, as few as 1 in 10 vehicles around you on the freeway will help moderate human behavior, reducing congestion and producing smoother, safer traffic flow.

 23 Toby Segaran’s Programming Collective Intelligence kicked off my adventure with machine learning in 2010 (https://www.goodreads.com/book/show/1741472.Programming_Collective_Intelligence).

 Part 1. Wordy machines

 Part 1 kicks off your natural language processing (NLP) adventure with an introduction to some real-world applications.

 In chapter 1, you’ll quickly begin to think of ways you can use machines that process words in your own life. And hopefully you’ll get a sense for the magic—the power of machines that can glean information from the words in a natural language document. Words are the foundation of any language, whether it’s the keywords in a programming language or the natural language words you learned as a child.

 In chapter 2, we give you the tools you need to teach machines to extract words from documents. There’s more to it than you might guess, and we show you all the tricks. You’ll learn how to automatically group natural language words together into groups of words with similar meanings without having to hand-craft synonym lists.

 In chapter 3, we count those words and assemble them into vectors that represent the meaning of a document. You can use these vectors to represent the meaning of an entire document, whether it’s a 140-character tweet or a 500-page novel.

 In chapter 4, you’ll discover some time-tested math tricks to compress your vectors down to much more useful topic vectors.

 By the end of part 1, you’ll have the tools you need for many interesting NLP applications—from semantic search to chatbots.

 1 Packets of thought (NLP overview)

 This chapter covers

 	What natural language processing (NLP) is

 	Why NLP is hard and only recently has become widespread

 	When word order and grammar is important and when it can be ignored

 	How a chatbot combines many of the tools of NLP

 	How to use a regular expression to build the start of a tiny chatbot

 You are about to embark on an exciting adventure in natural language processing. First we show you what NLP is and all the things you can do with it. This will get your wheels turning, helping you think of ways to use NLP in your own life, both at work and at home.

 Then we dig into the details of exactly how to process a small bit of English text using a programming language like Python, which will help you build up your NLP toolbox incrementally. In this chapter, you’ll write your first program that can read and write English statements. This Python snippet will be the first of many you’ll use to learn all the tricks needed to assemble an English language dialog engine—a chatbot.

1.1 Natural language vs. programming language

 Natural languages are different from computer programming languages. They aren’t intended to be translated into a finite set of mathematical operations, like programming languages are. Natural languages are what humans use to share information with each other. We don’t use programming languages to tell each other about our day or to give directions to the grocery store. A computer program written with a programming language tells a machine exactly what to do. But there are no compilers or interpreters for natural languages such as English and French.

 Definition Natural language processing is an area of research in computer science and artificial intelligence (AI) concerned with processing natural languages such as English or Mandarin. This processing generally involves translating natural language into data (numbers) that a computer can use to learn about the world. And this understanding of the world is sometimes used to generate natural language text that reflects that understanding.

 Nonetheless, this chapter shows you how a machine can process natural language. You might even think of this as a natural language interpreter, just like the Python interpreter. When the computer program you develop processes natural language, it will be able to act on those statements or even reply to them. But these actions and replies aren’t precisely defined, which leaves more discretion up to you, the developer of the natural language pipeline.

 Definition A natural language processing system is often referred to as a pipeline because it usually involves several stages of processing where natural language flows in one end and the processed output flows out the other.

 You’ll soon have the power to write software that does interesting, unpredictable things, like carry on a conversation, which can make machines seem a bit more human. It may seem a bit like magic—at first, all advanced technology does. But we pull back the curtain so you can explore backstage, and you’ll soon discover all the props and tools you need to do the magic tricks yourself.

 “Everything is easy, once you know the answer..

 —Dave Magee

1.2 The magic

 What’s so magical about a machine that can read and write in a natural language? Machines have been processing languages since computers were invented. However, these “formal” languages—such as early languages Ada, COBOL, and Fortran—were designed to be interpreted (or compiled) only one correct way. Today Wikipedia lists more than 700 programming languages. In contrast, Ethnologue[1] has identified 10 times as many natural languages spoken by humans around the world. And Google’s index of natural language documents is well over 100 million gigabytes.[2] And that’s just the index. And it’s incomplete. The size of the actual natural language content currently online must exceed 100 billion gigabytes.[3] But this massive amount of natural language text isn’t the only reason it’s important to build software that can process it.

 The interesting thing about the process is that it’s hard. Machines with the capability of processing something natural isn’t natural. It’s kind of like building a structure that can do something useful with architectural diagrams. When software can process languages not designed for machines to understand, it seems magical—something we thought was a uniquely human capability.

 The word “natural” in “natural language” is used in the same sense that it is used in “natural world.” Natural, evolved things in the world about us are different from mechanical, artificial things designed and built by humans. Being able to design and build software that can read and process language like what you’re reading here—language about building software that can process natural language... well that’s very meta, very magical.

 To make your job a little easier, we focus on only one natural language, English. But you can use the techniques you learn in this book to build software that can process any language, even a language you don’t understand, or has yet to be deciphered by archaeologists and linguists. And we’re going to show you how to write software to process and generate that language using only one programming language, Python.

 Python was designed from the ground up to be a readable language. It also exposes a lot of its own language processing “guts.” Both of these characteristics make it a natural choice for learning natural language processing. It’s a great language for building maintainable production pipelines for NLP algorithms in an enterprise environment, with many contributors to a single codebase. We even use Python in lieu of the “universal language” of mathematics and mathematical symbols, wherever possible. After all, Python is an unambiguous way to express mathematical algorithms,[4] and it’s designed to be as readable as possible for programmers like you.

 1.2.1 Machines that converse

 Natural languages can’t be directly translated into a precise set of mathematical operations, but they do contain information and instructions that can be extracted. Those pieces of information and instruction can be stored, indexed, searched, or immediately acted upon. One of those actions could be to generate a sequence of words in response to a statement. This is the function of the “dialog engine” or chatbot that you’ll build.

 We focus entirely on English text documents and messages, not spoken statements. We bypass the conversion of spoken statements into text—speech recognition, or speech to text (STT). We also ignore speech generation or text to speech, converting text back into some human-sounding voice utterance. But you can still use what you learn to build a voice interface or virtual assistant like Siri or Alexa, because speech-to-text and text-to-speech libraries are freely available. Android and iOS mobile operating systems provide high quality speech recognition and generation APIs, and there are Python packages to accomplish similar functionality on a laptop or server.

 Speech recognition systems

 If you want to build a customized speech recognition or generation system, that undertaking is a whole book in itself; we leave that as an “exercise for the reader.” It requires a lot of high quality labeled data, voice recordings annotated with their phonetic spellings, and natural language transcriptions aligned with the audio files. Some of the algorithms you learn in this book might help, but most of the recognition and generation algorithms are quite different.

 1.2.2 The math

 Processing natural language to extract useful information can be difficult. It requires tedious statistical bookkeeping, but that’s what machines are for. And like many other technical problems, solving it is a lot easier once you know the answer. Machines still cannot perform most practical NLP tasks, such as conversation and reading comprehension, as accurately and reliably as humans. So you might be able to tweak the algorithms you learn in this book to do some NLP tasks a bit better.

 The techniques you’ll learn, however, are powerful enough to create machines that can surpass humans in both accuracy and speed for some surprisingly subtle tasks. For example, you might not have guessed that recognizing sarcasm in an isolated Twitter message can be done more accurately by a machine than by a human.[5] Don’t worry, humans are still better at recognizing humor and sarcasm within an ongoing dialog, due to our ability to maintain information about the context of a statement. But machines are getting better and better at maintaining context. And this book helps you incorporate context (metadata) into your NLP pipeline, in case you want to try your hand at advancing the state of the art.

 Once you extract structured numerical data, vectors, from natural language, you can take advantage of all the tools of mathematics and machine learning. We use the same linear algebra tricks as the projection of 3D objects onto a 2D computer screen, something that computers and drafters were doing long before natural language processing came into its own. These breakthrough ideas opened up a world of “semantic” analysis, allowing computers to interpret and store the “meaning” of statements rather than just word or character counts. Semantic analysis, along with statistics, can help resolve the ambiguity of natural language—the fact that words or phrases often have multiple meanings or interpretations.

 So extracting information isn’t at all like building a programming language compiler (fortunately for you). The most promising techniques bypass the rigid rules of regular grammars (patterns) or formal languages. You can rely on statistical relationships between words instead of a deep system of logical rules.[6] Imagine if you had to define English grammar and spelling rules in a nested tree of if...then statements. Could you ever write enough rules to deal with every possible way that words, letters, and punctuation can be combined to make a statement? Would you even begin to capture the semantics, the meaning of English statements? Even if it were useful for some kinds of statements, imagine how limited and brittle this software would be. Unanticipated spelling or punctuation would break or befuddle your algorithm.

 Natural languages have an additional “decoding” challenge that is even harder to solve. Speakers and writers of natural languages assume that a human is the one doing the processing (listening or reading), not a machine. So when I say “good morning”, I assume that you have some knowledge about what makes up a morning, including not only that mornings come before noons and afternoons and evenings but also after midnights. And you need to know they can represent times of day as well as general experiences of a period of time. The interpreter is assumed to know that “good morning” is a common greeting that doesn’t contain much information at all about the morning. Rather it reflects the state of mind of the speaker and her readiness to speak with others.

 This theory of mind about the human processor of language turns out to be a powerful assumption. It allows us to say a lot with few words if we assume that the “processor” has access to a lifetime of common sense knowledge about the world. This degree of compression is still out of reach for machines. There is no clear “theory of mind” you can point to in an NLP pipeline. However, we show you techniques in later chapters to help machines build ontologies, or knowledge bases, of common sense knowledge to help interpret statements that rely on this knowledge.

1.3 Practical applications

 Natural language processing is everywhere. It’s so ubiquitous that some of the examples in table 1.1 may surprise you.

 Table 1.1 Categorized NLP applications

 	Search

 	Web

 	Documents

 	Autocomplete

 	Editing

 	Spelling

 	Grammar

 	Style

 	Dialog

 	Chatbot

 	Assistant

 	Scheduling

 	Writing

 	Index

 	Concordance

 	Table of contents

 	Email

 	Spam filter

 	Classification

 	Prioritization

 	Text mining

 	Summarization

 	Knowledge extraction

 	Medical diagnoses

 	Law

 	Legal inference

 	Precedent search

 	Subpoena classification

 	News

 	Event detection

 	Fact checking

 	Headline composition

 	Attribution

 	Plagiarism detection

 	Literary forensics

 	Style coaching

 	Sentiment analysis

 	Community morale monitoring

 	Product review triage

 	Customer care

 	Behavior prediction

 	Finance

 	Election forecasting

 	Marketing

 	Creative writing

 	Movie scripts

 	Poetry

 	Song lyrics

 A search engine can provide more meaningful results if it indexes web pages or document archives in a way that takes into account the meaning of natural language text. Autocomplete uses NLP to complete your thought and is common among search engines and mobile phone keyboards. Many word processors, browser plugins, and text editors have spelling correctors, grammar checkers, concordance composers, and most recently, style coaches. Some dialog engines (chatbots) use natural language search to find a response to their conversation partner’s message.

 NLP pipelines that generate (compose) text can be used not only to compose short replies in chatbots and virtual assistants, but also to assemble much longer passages of text. The Associated Press uses NLP “robot journalists” to write entire financial news articles and sporting event reports.[7] Bots can compose weather forecasts that sound a lot like what your hometown weather person might say, perhaps because human meteorologists use word processors with NLP features to draft scripts.

 NLP systems can generate more than just short social network posts. NLP can be used to compose lengthy movie and product reviews on Amazon and elsewhere. Many reviews are the creation of autonomous NLP pipelines that have never set foot in a movie theater or purchased the product they’re reviewing.

 There are chatbots on Slack, IRC, and even customer service websites—places where chatbots have to deal with ambiguous commands or questions. And chatbots paired with voice recognition and generation systems can even handle lengthy conversations with an indefinite goal or “objective function” such as making a reservation at a local restaurant.[9] NLP systems can answer phones for companies that want something better than a phone tree but don’t want to pay humans to help their customers.

 Note With its Duplex demonstration at Google IO, engineers and managers overlooked concerns about the ethics of teaching chatbots to deceive humans. We all ignore this dilemma when we happily interact with chatbots on Twitter and other anonymous social networks, where bots don’t share their pedigree. With bots that can so convincingly deceive us, the AI control problem[10] looms, and Yuval Harari’s cautionary forecast of “Homo Deus”[11] may come sooner than we think.

 NLP systems exist that can act as email “receptionists” for businesses or executive assistants for managers. These assistants schedule meetings and record summary details in an electronic Rolodex, or CRM (customer relationship management system), interacting with others by email on their boss’s behalf. Companies are putting their brand and face in the hands of NLP systems, allowing bots to execute marketing and messaging campaigns. And some inexperienced daredevil NLP textbook authors are letting bots author several sentences in their book. More on that later.

1.4 Language through a computer’s “eyes”

 When you type “Good Morn’n Rosa,” a computer sees only “01000111 01101111 01101111 ...”. How can you program a chatbot to respond to this binary stream intelligently? Could a nested tree of conditionals (if... else... statements) check each one of those bits and act on them individually? This would be equivalent to writing a special kind of program called a finite state machine (FSM). An FSM that outputs a sequence of new symbols as it runs, like the Python str.translate function, is called a finite state transducer (FST). You’ve probably already built an FSM without even knowing it. Have you ever written a regular expression? That’s the kind of FSM we use in the next section to show you one possible approach to NLP: the pattern-based approach.

 What if you decided to search a memory bank (database) for the exact same string of bits, characters, or words, and use one of the responses that other humans and authors have used for that statement in the past? But imagine if there was a typo or variation in the statement. Our bot would be sent off the rails. And bits aren’t continuous or forgiving—they either match or they don’t. There’s no obvious way to find similarity between two streams of bits that takes into account what they signify. The bits for “good” will be just as similar to “bad!” as they are to “okay.”

 But let’s see how this approach would work before we show you a better way. Let’s build a small regular expression to recognize greetings like “Good morning Rosa” and respond appropriately—our first tiny chatbot!

 1.4.1 The language of locks

 Surprisingly, the humble combination lock is actually a simple language processing machine. So, if you’re mechanically inclined, this section may be illuminating. But if you don’t need mechanical analogies to help you understand algorithms and how regular expressions work, then you can skip this section.

 After finishing this section, you’ll never think of your combination bicycle lock the same way again. A combination lock certainly can’t read and understand the textbooks stored inside a school locker, but it can understand the language of locks. It can understand when you try to “tell” it a “password”: a combination. A padlock combination is any sequence of symbols that matches the “grammar” (pattern) of lock language. Even more importantly, the padlock can tell if a lock “statement” matches a particularly meaningful statement, the one for which there’s only one correct “response”: to release the catch holding the U-shaped hasp so you can get into your locker.

 This lock language (regular expressions) is a particularly simple one. But it’s not so simple that we can’t use it in a chatbot. We can use it to recognize a key phrase or command to unlock a particular action or behavior.

 For example, we’d like our chatbot to recognize greetings such as “Hello Rosa,” and respond to them appropriately. This kind of language, like the language of locks, is a formal language because it has strict rules about how an acceptable statement must be composed and interpreted. If you’ve ever written a math equation or coded a programming language expression, you’ve written a formal language statement.

 Formal languages are a subset of natural languages. Many natural language statements can be matched or generated using a formal language grammar, like regular expressions. That’s the reason for this diversion into the mechanical, “click, whirr”[12] language of locks.

 1.4.2 Regular expressions

 Regular expressions use a special kind (class) of formal language grammar called a regular grammar. Regular grammars have predictable, provable behavior, and yet are flexible enough to power some of the most sophisticated dialog engines and chatbots on the market. Amazon Alexa and Google Now are mostly pattern-based engines that rely on regular grammars. Deep, complex regular grammar rules can often be expressed in a single line of code called a regular expression. There are successful chatbot frameworks in Python, like Will, that rely exclusively on this kind of language to produce some useful and interesting behavior. Amazon Echo, Google Home, and similarly complex and useful assistants use this kind of language to encode the logic for most of their user interaction.

 Note Regular expressions implemented in Python and in Posix (Unix) applications such as grep aren’t true regular grammars. They have language and logic features such as look-ahead and look-back that make leaps of logic and recursion that aren’t allowed in a regular grammar. As a result, regular expressions aren’t provably halting; they can sometimes “crash” or run forever.[13]

 You may be saying to yourself, “I’ve heard of regular expressions. I use grep. But that’s only for search!” And you’re right. Regular expressions are indeed used mostly for search, for sequence matching. But anything that can find matches within text is also great for carrying out a dialog. Some chatbots, like Will, use “search” to find sequences of characters within a user statement that they know how to respond to. These recognized sequences then trigger a scripted response appropriate to that particular regular expression match. And that same regular expression can also be used to extract a useful piece of information from a statement. A chatbot can add that bit of information to its knowledge base about the user or about the world the user is describing.

 A machine that processes this kind of language can be thought of as a formal mathematical object called a finite state machine or deterministic finite automaton (DFA). FSMs come up again and again in this book. So you’ll eventually get a good feel for what they’re used for without digging into FSM theory and math. For those who can’t resist trying to understand a bit more about these computer science tools, figure 1.1 shows where FSMs fit into the nested world of automata (bots). And the side note that follows explains a bit more formal detail about formal languages.

 Figure 1.1 Kinds of automata

 [image:]

 Formal mathematical explanation of formal languages

 Kyle Gorman describes programming languages this way:

 	Most (if not all) programming languages are drawn from the class of context-free languages.

 	Context-free languages are parsed with context-free grammars, which provide efficient parsing.

 	The regular languages are also efficiently parsable and used extensively in computing for string matching.

 	String matching applications rarely require the expressiveness of context-free.

 	There are a number of formal language classes, a few of which are shown here (in decreasing complexity):[a]

 	Recursively enumerable

 	Context-sensitive

 	Context-free

 	Regular

 Natural languages:

 	Are not regular[b]

 	Are not context-free[c]

 	Can’t be defined by any formal grammar[d]

 a See the web page titled “Chomsky hierarchy - Wikipedia” (https://en.wikipedia.org/wiki/Chomsky_hierarchy).

 b “English is not a regular language” (http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=20) by Shuly Wintner.

 c “Is English context-free?” (http://cs.haifa.ac.il/~shuly/teaching/08/nlp/complexity.pdf#page=24) by Shuly Wintner.

 d See the web page titled “1.11. Formal and Natural Languages — How to Think like a Computer Scientist: Interactive Edition” (http://interactivepython.org/runestone/static/CS152f17/GeneralIntro/FormalandNaturalLanguages.html).

 1.4.3 A simple chatbot

 Let’s build a quick and dirty chatbot. It won’t be very capable, and it will require a lot of thinking about the English language. You will also have to hardcode regular expressions to match the ways people may try to say something. But don’t worry if you think you couldn’t have come up with this Python code yourself. You won’t have to try to think of all the different ways people can say something, like we did in this example. You won’t even have to write regular expressions (regexes) to build an awesome chatbot. We show you how to build a chatbot of your own in later chapters without hardcoding anything. A modern chatbot can learn from reading (processing) a bunch of English text. And we show you how to do that in later chapters.

 This pattern matching chatbot is an example of a tightly controlled chatbot. Pattern matching chatbots were common before modern machine learning chatbot techniques were developed. And a variation of the pattern matching approach we show you here is used in chatbots like Amazon Alexa and other virtual assistants.

 For now let’s build an FSM, a regular expression, that can speak lock language (regular language). We could program it to understand lock language statements, such as “01-02-03.” Even better, we’d like it to understand greetings, things like “open sesame” or “hello Rosa.” An important feature for a prosocial chatbot is to be able to respond to a greeting. In high school, teachers often chastised me for being impolite when I’d ignore greetings like this while rushing to class. We surely don’t want that for our benevolent chatbot.

 In machine communication protocol, we’d define a simple handshake with an ACK (acknowledgement) signal after each message passed back and forth between two machines. But our machines are going to be interacting with humans who say things like “Good morning, Rosa.” We don’t want it sending out a bunch of chirps, beeps, or ACK messages, like it’s syncing up a modem or HTTP connection at the start of a conversation or web browsing session. Instead let’s use regular expressions to recognize several different human greetings at the start of a conversation handshake:

 >>> import re ❶
>>> r = "(hi|hello|hey)[]*([a-z]*)" ❷
>>> re.match(r, 'Hello Rosa', flags=re.IGNORECASE) ❸
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re.match(r, "hi ho, hi ho, it's off to work ...", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 5), match='hi ho'>
>>> re.match(r, "hey, what's up", flags=re.IGNORECASE)
<_sre.SRE_Match object; span=(0, 3), match='hey>

 ❶ There are two “official” regular expression packages in Python. We use the re package here just because it’s installed with all versions of Python. The regex package comes with later versions of Python and is much more powerful, as you’ll see in chapter 2.

 ❷ '|' means “OR,” and '*' means the preceding character can occur 0 or more times and still match. So our regex will match greetings that start with “hi” or “hello” or “hey” followed by any number of '<space>' characters and then any number of letters.

 ❸ Ignoring the case of text characters is common, to keep the regular expressions simpler.

 In regular expressions, you can specify a character class with square brackets. And you can use a dash (-) to indicate a range of characters without having to type them all out individually. So the regular expression "[a-z]" will match any single lowercase letter, “a” through “z.” The star ('*') after a character class means that the regular expression will match any number of consecutive characters if they are all within that character class.

 Let’s make our regular expression a lot more detailed to try to match more greetings:

 >>> r = r"[^a-z]*([y]o|[h']?ello|ok|hey|(good[])?(morn[gin']{0,3}|"\
... r"afternoon|even[gin']{0,3}))[\s,;:]{1,3}([a-z]{1,20})"
>>> re_greeting = re.compile(r, flags=re.IGNORECASE) ❶
>>> re_greeting.match('Hello Rosa')
<_sre.SRE_Match object; span=(0, 10), match='Hello Rosa'>
>>> re_greeting.match('Hello Rosa').groups()
('Hello', None, None, 'Rosa')
>>> re_greeting.match("Good morning Rosa")
<_sre.SRE_Match object; span=(0, 17), match="Good morning Rosa">
>>> re_greeting.match("Good Manning Rosa") ❷
>>> re_greeting.match('Good evening Rosa Parks').groups() ❸
('Good evening', 'Good ', 'evening', 'Rosa')
>>> re_greeting.match("Good Morn'n Rosa")
<_sre.SRE_Match object; span=(0, 16), match="Good Morn'n Rosa">
>>> re_greeting.match("yo Rosa")
<_sre.SRE_Match object; span=(0, 7), match='yo Rosa'>

 ❶ You can compile regular expressions so you don’t have to specify the options (flags) each time you use them.

 ❷ Notice that this regular expression cannot recognize (match) words with typos.

 ❸ Our chatbot can separate different parts of the greeting into groups, but it will be unaware of Rosa’s famous last name, because we don’t have a pattern to match any characters after the first name.

 Tip The “r” before the quote specifies a raw string, not a regular expression. With a Python raw string, you can send backslashes directly to the regular expression compiler without having to double-backslash ("\\") all the special regular expression characters such as spaces ("\\ ") and curly braces or handlebars ("\\{ \\}").

 There’s a lot of logic packed into that first line of code, the regular expression. It gets the job done for a surprising range of greetings. But it missed that “Manning” typo, which is one of the reasons NLP is hard. In machine learning and medical diagnostic testing, that’s called a false negative classification error. Unfortunately, it will also match some statements that humans would be unlikely to ever say—a false positive, which is also a bad thing. Having both false positive and false negative errors means that our regular expression is both too liberal and too strict. These mistakes could make our bot sound a bit dull and mechanical. We’d have to do a lot more work to refine the phrases that it matches to be more human-like.

 And this tedious work would be highly unlikely to ever succeed at capturing all the slang and misspellings people use. Fortunately, composing regular expressions by hand isn’t the only way to train a chatbot. Stay tuned for more on that later (the entire rest of the book). So we only use them when we need precise control over a chatbot’s behavior, such as when issuing commands to a voice assistant on your mobile phone.

 But let’s go ahead and finish up our one-trick chatbot by adding an output generator. It needs to say something. We use Python’s string formatter to create a “template” for our chatbot response:

 >>> my_names = set(['rosa', 'rose', 'chatty', 'chatbot', 'bot',
... 'chatterbot'])
>>> curt_names = set(['hal', 'you', 'u'])
>>> greeter_name = '' ❶
>>> match = re_greeting.match(input())
...
>>> if match:
... at_name = match.groups()[-1]
... if at_name in curt_names:
... print("Good one.")
... elif at_name.lower() in my_names:
... print("Hi {}, How are you?".format(greeter_name))

 ❶ We don’t yet know who is chatting with the bot, and we won’t worry about it here.

 So if you run this little script and chat to our bot with a phrase like “Hello Rosa,” it will respond by asking about your day. If you use a slightly rude name to address the chatbot, she will be less responsive, but not inflammatory, to try to encourage politeness.[14] If you name someone else who might be monitoring the conversation on a party line or forum, the bot will keep quiet and allow you and whomever you are addressing to chat. Obviously there’s no one else out there watching our input() line, but if this were a function within a larger chatbot, you’d want to deal with these sorts of things.

 NLP spam filters in early email programs helped email overtake telephone and fax communication channels in the '90s. And the spam filters have retained their edge in the cat and mouse game between spam filters and spam generators for email, but may be losing in other environments like social networks. An estimated 20% of the tweets about the 2016 US presidential election were composed by chatbots.[8] These bots amplify their owners’ and developers’ viewpoints. And these “puppet masters” tend to be foreign governments or large corporations with the resources and motivation to influence popular opinion.

 Because of the limitations of computational resources, early NLP researchers had to use their human brains’ computational power to design and hand-tune complex logical rules to extract information from a natural language string. This is called a pattern-based approach to NLP. The patterns don’t have to be merely character sequence patterns, like our regular expression. NLP also often involves patterns of word sequences, or parts of speech, or other “higher level” patterns. The core NLP building blocks like stemmers and tokenizers as well as sophisticated end-to-end NLP dialog engines (chatbots) like ELIZA were built this way, from regular expressions and pattern matching. The art of pattern-matching approaches to NLP is coming up with elegant patterns that capture just what you want, without too many lines of regular expression code.

 Classical computational theory of mind This classical NLP pattern-matching approach is based on the computational theory of mind (CTM). CTM assumes that human-like NLP can be accomplished with a finite set of logical rules that are processed in series.[15] Advancements in neuroscience and NLP led to the development of a “connectionist” theory of mind around the turn of the century, which allows for parallel pipelines processing natural language simultaneously, as is done in artificial neural networks.[16], [17]

 You’ll learn more about pattern-based approaches—such as the Porter stemmer or the Treebank tokenizer—to tokenizing and stemming in chapter 2. But in later chapters we take advantage of modern computational resources, as well as our larger data-sets, to shortcut this laborious hand programming and refining.

 If you’re new to regular expressions and want to learn more, you can check out appendix A or the online documentation for Python regular expressions. But you don’t have to understand them just yet. We’ll continue to provide you with example regular expressions as we use them for the building blocks of our NLP pipeline. So don’t worry if they look like gibberish. Human brains are pretty good at generalizing from a set of examples, and I’m sure it will become clear by the end of this book. And it turns out machines can learn this way as well.

 1.4.4 Another way

 Is there a statistical or machine learning approach that might work in place of the pattern-based approach? If we had enough data could we do something different? What if we had a giant database containing sessions of dialog between humans, statements and responses for thousands or even millions of conversations? One way to build a chatbot would be to search that database for the exact same string of characters our chatbot user just “said” to our chatbot. Couldn’t we then use one of the responses to that statement that other humans have said in the past?

 But imagine how a single typo or variation in the statement would trip up our bot. Bit and character sequences are discrete. They either match or they don’t. Instead, we’d like our bot to be able to measure the difference in meaning between character sequences.

 When we use character sequence matches to measure distance between natural language phrases, we’ll often get it wrong. Phrases with similar meaning, like “good” and “okay,” can often have different character sequences and large distances when we count up character-by-character matches to measure distance. And sequences with completely different meanings, like “bad” and “bar,” might be too close to one other when we use metrics designed to measure distances between numerical sequences. Metrics like Jaccard, Levenshtein, and Euclidean vector distance can sometimes add enough “fuzziness” to prevent a chatbot from stumbling over minor spelling errors or typos. But these metrics fail to capture the essence of the relationship between two strings of characters when they are dissimilar. And they also sometimes bring small spelling differences close together that might not really be typos, like “bad” and “bar.”

 Distance metrics designed for numerical sequences and vectors are useful for a few NLP applications, like spelling correctors and recognizing proper nouns. So we use these distance metrics when they make sense. But for NLP applications where we are more interested in the meaning of the natural language than its spelling, there are better approaches. We use vector representations of natural language words and text and some distance metrics for those vectors for these NLP applications. We show you each approach, one by one, as we talk about these different vector representations and the kinds of applications they are used with.

 We won’t stay in this confusing binary world of logic for long, but let’s imagine we’re famous World War II-era code-breaker Mavis Batey at Bletchley Park and we’ve just been handed that binary, Morse code message intercepted from communication between two German military officers. It could hold the key to winning the war. Where would we start? Well the first step in our analysis would be to do something statistical with that stream of bits to see if we can find patterns. We can first use the Morse code table (or ASCII table, in our case) to assign letters to each group of bits. Then, if the characters are gibberish to us, as they are to a computer or a cryptographer in WWII, we could start counting them up, looking up the short sequences in a dictionary of all the words we’ve seen before and putting a mark next to the entry every time it occurs. We might also make a mark in some other log book to indicate which message the word occurred in, creating an encyclopedic index to all the documents we’ve read before. This collection of documents is called a corpus, and the collection of words or sequences we’ve listed in our index is called a lexicon.

 If we’re lucky, and we’re not at war, and the messages we’re looking at aren’t strongly encrypted, we’ll see patterns in those German word counts that mirror counts of English words used to communicate similar kinds of messages. Unlike a cryptographer trying to decipher German Morse code intercepts, we know that the symbols have consistent meaning and aren’t changed with every key click to try to confuse us. This tedious counting of characters and words is just the sort of thing a computer can do without thinking. And surprisingly, it’s nearly enough to make the machine appear to understand our language. It can even do math on these statistical vectors that coincides with our human understanding of those phrases and words. When we show you how to teach a machine our language using Word2Vec in later chapters, it may seem magical, but it’s not. It’s just math, computation.

 But let’s think for a moment about what information has been lost in our effort to count all the words in the messages we receive. We assign the words to bins and store them away as bit vectors like a coin or token sorter directing different kinds of tokens to one side or the other in a cascade of decisions that piles them in bins at the bottom. Our sorting machine must take into account hundreds of thousands if not millions of possible token “denominations,” one for each possible word that a speaker or author might use. Each phrase or sentence or document we feed into our token sorting machine will come out the bottom, where we have a “vector” with a count of the tokens in each slot. Most of our counts are zero, even for large documents with verbose vocabulary. But we haven’t lost any words yet. What have we lost? Could you, as a human, understand a document that we presented you in this way, as a count of each possible word in your language, without any sequence or order associated with those words? I doubt it. But if it was a short sentence or tweet, you’d probably be able to rearrange them into their intended order and meaning most of the time.

 Here’s how our token sorter fits into an NLP pipeline right after a tokenizer (see chapter 2). We’ve included a stopword filter as well as a “rare” word filter in our mechanical token sorter sketch. Strings flow in from the top, and bag-of-word vectors are created from the height profile of the token “stacks” at the bottom.

 Figure 1.2 Token sorting tray

 [image:]

 It turns out that machines can handle this bag of words quite well and glean most of the information content of even moderately long documents this way. Each document, after token sorting and counting, can be represented as a vector, a sequence of integers for each word or token in that document. You see a crude example in figure 1.2, and then chapter 2 shows some more useful data structures for bag-of-word vectors.

 This is our first vector space model of a language. Those bins and the numbers they contain for each word are represented as long vectors containing a lot of zeros and a few ones or twos scattered around wherever the word for that bin occurred. All the different ways that words could be combined to create these vectors is called a vector space. And relationships between vectors in this space are what make up our model, which is attempting to predict combinations of these words occurring within a collection of various sequences of words (typically sentences or documents). In Python, we can represent these sparse (mostly empty) vectors (lists of numbers) as dictionaries. And a Python Counter is a special kind of dictionary that bins objects (including strings) and counts them just like we want:

 >>> from collections import Counter

>>> Counter("Guten Morgen Rosa".split())
Counter({'Guten': 1, 'Rosa': 1, 'morgen': 1})
>>> Counter("Good morning, Rosa!".split())
Counter({'Good': 1, 'Rosa!': 1, 'morning,': 1})

 You can probably imagine some ways to clean those tokens up. We do just that in the next chapter. But you might also think to yourself that these sparse, high-dimensional vectors (many bins, one for each possible word) aren’t very useful for language processing. But they are good enough for some industry-changing tools like spam filters, which we discuss in chapter 3.

 We can imagine feeding into this machine, one at a time, all the documents, statements, sentences, and even single words we could find. We’d count up the tokens in each slot at the bottom after each of these statements was processed, and we’d call that a vector representation of that statement. All the possible vectors a machine might create this way is called a vector space. And this model of documents and statements and words is called a vector space model. It allows us to use linear algebra to manipulate these vectors and compute things like distances and statistics about natural language statements, which helps us solve a much wider range of problems with less human programming and less brittleness in the NLP pipeline.

 One statistical question that is asked of bag-of-words vector sequences is “What is the combination of words most likely to follow a particular bag of words?” Or, even better, if a user enters a sequence of words, “What is the closest bag of words in our database to a bag-of-words vector provided by the user?” This is a search query. The input words are the words you might type into a search box, and the closest bag-of-words vector corresponds to the document or web page you were looking for. The ability to efficiently answer these two questions would be sufficient to build a machine learning chatbot that could get better and better as we gave it more and more data.

 But wait a minute, perhaps these vectors aren’t like any you’ve ever worked with before. They’re extremely high-dimensional. It’s possible to have millions of dimensions for a 3-gram vocabulary computed from a large corpus. In chapter 3, we discuss the curse of dimensionality and some other properties that make high dimensional vectors difficult to work with.

1.5 A brief overflight of hyperspace

 In chapter 3, we show you how to consolidate words into a smaller number of vector dimensions to help mitigate the curse of dimensionality and maybe turn it to our advantage. When we project these vectors onto each other to determine the distance between pairs of vectors, this will be a reasonable estimate of the similarity in their meaning rather than merely their statistical word usage. This vector distance metric is called cosine distance metric, which we talk about in chapter 3, and then reveal its true power on reduced dimension topic vectors in chapter 4. We can even project (“embed” is the more precise term) these vectors in a 2D plane to have a “look” at them in plots and diagrams to see if our human brains can find patterns. We can then teach a computer to recognize and act on these patterns in ways that reflect the underlying meaning of the words that produced those vectors.

 Imagine all the possible tweets or messages or sentences that humans might write. Even though we do repeat ourselves a lot, that’s still a lot of possibilities. And when those tokens are each treated as separate, distinct dimensions, there’s no concept that “Good morning, Hobs” has some shared meaning with “Guten Morgen, Hannes.” We need to create some reduced dimension vector space model of messages so we can label them with a set of continuous (float) values. We could rate messages and words for qualities like subject matter and sentiment. We could ask questions like

 	How likely is this message to be a question?

 	How much is it about a person?

 	How much is it about me?

 	How angry or happy does it sound?

 	Is it something I need to respond to?

 Think of all the ratings we could give statements. We could put these ratings in order and “compute” them for each statement to compile a “vector” for each statement. The list of ratings or dimensions we could give a set of statements should be much smaller than the number of possible statements. And statements that mean the same thing should have similar values for all our questions.

 These rating vectors become something that a machine can be programmed to react to. We can simplify and generalize vectors further by clumping (clustering) statements together, making them close on some dimensions and not on others.

 But how can a computer assign values to each of these vector dimensions? Well, we simplify our vector dimension questions to things like “Does it contain the word ‘good’?” Does it contain the word “morning?” And so on. You can see that we might be able to come up with a million or so questions resulting in numerical values that a computer could assign to a phrase. This is the first practical vector space model, called a bit vector language model, or the sum of “one-hot encoded” vectors. You can see why computers are just now getting powerful enough to make sense of natural language. The millions of million-dimensional vectors that humans might generate simply “Does not compute!” on a supercomputer of the 80s, but is no problem on a commodity laptop in the 21st century. More than just raw hardware power and capacity made NLP practical; incremental, constant-RAM, linear algebra algorithms were the final piece of the puzzle that allowed machines to crack the code of natural language.

 There’s an even simpler, but much larger representation that can be used in a chatbot. What if our vector dimensions completely described the exact sequence of characters. It would contain the answer to questions like, “Is the first letter an A? Is it a B? ... Is the second letter an A?” and so on. This vector has the advantage that it retains all the information contained in the original text, including the order of the characters and words. Imagine a player piano that could only play a single note at a time, and it had 52 or more possible notes it could play. The “notes” for this natural language mechanical player piano are the 26 uppercase and lowercase letters plus any punctuation that the piano must know how to “play.” The paper roll wouldn’t have to be much wider than for a real player piano, and the number of notes in some long piano songs doesn’t exceed the number of characters in a small document. But this one-hot character sequence encoding representation is mainly useful for recording and then replaying an exact piece rather than composing something new or extracting the essence of a piece. We can’t easily compare the piano paper roll for one song to that of another. And this representation is longer than the original ASCII-encoded representation of the document. The number of possible document representations just exploded in order to retain information about each sequence of characters. We retained the order of characters and words, but expanded the dimensionality of our NLP problem.

 These representations of documents don’t cluster together well in this character-based vector world. The Russian mathematician Vladimir Levenshtein came up with a brilliant approach for quickly finding similarities between sequences (strings of characters) in this world. Levenshtein’s algorithm made it possible to create some surprisingly fun and useful chatbots, with only this simplistic, mechanical view of language. But the real magic happened when we figured out how to compress/embed these higher dimensional spaces into a lower dimensional space of fuzzy meaning or topic vectors. We peek behind the magician’s curtain in chapter 4 when we talk about latent semantic indexing and latent Dirichlet allocation, two techniques for creating much more dense and meaningful vector representations of statements and documents.

1.6 Word order and grammar

 The order of words matters. Those rules that govern word order in a sequence of words (like a sentence) are called the grammar of a language. That’s something that our bag of words or word vector discarded in the earlier examples. Fortunately, in most short phrases and even many complete sentences, this word vector approximation works OK. If you just want to encode the general sense and sentiment of a short sentence, word order is not terribly important. Take a look at all these orderings of our “Good morning Rosa” example:

 >>> from itertools import permutations

>>> [" ".join(combo) for combo in\
... permutations("Good morning Rosa!".split(), 3)]
['Good morning Rosa!',
 'Good Rosa! morning',
 'morning Good Rosa!',
 'morning Rosa! Good',
 'Rosa! Good morning',
 'Rosa! morning Good']

 Now if you tried to interpret each of these strings in isolation (without looking at the others), you’d probably conclude that they all probably had similar intent or meaning. You might even notice the capitalization of the word “Good” and place the word at the front of the phrase in your mind. But you might also think that “Good Rosa” was some sort of proper noun, like the name of a restaurant or flower shop. Nonetheless, a smart chatbot or clever woman of the 1940s in Bletchley Park would likely respond to any of these six permutations with the same innocuous greeting, “Good morning my dear General.”

 Let’s try that (in our heads) on a much longer, more complex phrase, a logical statement where the order of the words matters a lot:

 >>> s = """Find textbooks with titles containing 'NLP',
... or 'natural' and 'language', or
... 'computational' and 'linguistics'."""
>>> len(set(s.split()))
12
>>> import numpy as np
>>> np.arange(1, 12 + 1).prod() # factorial(12) = arange(1, 13).prod()
479001600

 The number of permutations exploded from factorial(3) == 6 in our simple greeting to factorial(12) == 479001600 in our longer statement! And it’s clear that the logic contained in the order of the words is important to any machine that would like to reply with the correct response. Even though common greetings aren’t usually garbled by bag-of-words processing, more complex statements can lose most of their meaning when thrown into a bag. A bag of words isn’t the best way to begin processing a database query, like the natural language query in the preceding example.

 Whether a statement is written in a formal programming language like SQL, or in an informal natural language like English, word order and grammar are important when a statement intends to convey logical relationships between things. That’s why computer languages depend on rigid grammar and syntax rule parsers. Fortunately, recent advances in natural language syntax tree parsers have made possible the extraction of syntactical and logical relationships from natural language with remarkable accuracy (greater than 90%).[18] In later chapters, we show you how to use packages like SyntaxNet (Parsey McParseface) and SpaCy to identify these relationships.

 And just as in the Bletchley Park example greeting, even if a statement doesn’t rely on word order for logical interpretation, sometimes paying attention to that word order can reveal subtle hints of meaning that might facilitate deeper responses. These deeper layers of natural language processing are discussed in the next section. And chapter 2 shows you a trick for incorporating some of the information conveyed by word order into our word-vector representation. It also shows you how to refine the crude tokenizer used in the previous examples (str.split()) to more accurately bin words into more appropriate slots within the word vector, so that strings like “good” and “Good” are assigned the same bin, and separate bins can be allocated for tokens like “rosa” and “Rosa” but not “Rosa!”.

1.7 A chatbot natural language pipeline

 A chatbot requires four kinds of processing as well as a database to maintain a memory of past statements and responses. Each of the four processing stages can contain one or more processing algorithms working in parallel or in series (see figure 1.3):

 	
Parse—Extract features, structured numerical data, from natural language text.

 	
Analyze—Generate and combine features by scoring text for sentiment, grammaticality, and semantics.

 	
Generate—Compose possible responses using templates, search, or language models.

 	
Execute—Plan statements based on conversation history and objectives, and select the next response.

 Each of these four stages can be implemented using one or more of the algorithms listed within the corresponding boxes in the block diagram. We show you how to use Python to accomplish near state-of-the-art performance for each of these processing steps. And we show you several alternative approaches to implementing these five subsystems.

 Figure 1.3 Chatbot recirculating (recurrent) pipeline

 [image:]

 Most chatbots will contain elements of all five of these subsystems (the four processing stages as well as the database). But many applications require only simple algorithms for many of these steps. Some chatbots are better at answering factual questions, and others are better at generating lengthy, complex, convincingly human responses. Each of these capabilities require different approaches; we show you techniques for both.

 In addition, deep learning and data-driven programming (machine learning, or probabilistic language modeling) have rapidly diversified the possible applications for NLP and chatbots. This data-driven approach allows ever greater sophistication for an NLP pipeline by providing it with greater and greater amounts of data in the domain you want to apply it to. And when a new machine learning approach is discovered that makes even better use of this data, with more efficient model generalization or regularization, then large jumps in capability are possible.

 The NLP pipeline for a chatbot shown in figure 1.3 contains all the building blocks for most of the NLP applications that we described at the start of this chapter. As in Taming Text, we break out our pipeline into four main subsystems or stages. In addition, we’ve explicitly called out a database to record data required for each of these stages and persist their configuration and training sets over time. This can enable batch or online retraining of each of the stages as the chatbot interacts with the world. We’ve also shown a “feedback loop” on our generated text responses so that our responses can be processed using the same algorithms used to process the user statements. The response “scores” or features can then be combined in an objective function to evaluate and select the best possible response, depending on the chatbot’s plan or goals for the dialog. This book is focused on configuring this NLP pipeline for a chatbot, but you may also be able to see the analogy to the NLP problem of text retrieval or “search,” perhaps the most common NLP application. And our chatbot pipeline is certainly appropriate for the question answering application that was the focus of Taming Text.

 The application of this pipeline to financial forecasting or business analytics may not be so obvious. But imagine the features generated by the analysis portion of your pipeline. These features of your analysis or feature generation can be optimized for your particular finance or business prediction. That way they can help you incorporate natural language data into a machine learning pipeline for forecasting. Despite focusing on building a chatbot, this book gives you the tools you need for a broad range of NLP applications, from search to financial forecasting.

 One processing element in figure 1.3 that isn’t typically employed in search, forecasting, or question answering systems is natural language generation. For chatbots this is their central feature. Nonetheless, the text generation step is often incorporated into a search engine NLP application and can give such an engine a large competitive advantage. The ability to consolidate or summarize search results is a winning feature for many popular search engines (DuckDuckGo, Bing, and Google). And you can imagine how valuable it is for a financial forecasting engine to be able to generate statements, tweets, or entire articles based on the business-actionable events it detects in natural language streams from social media networks and news feeds.

 The next section shows how the layers of such a system can be combined to create greater sophistication and capability at each stage of the NLP pipeline.

1.8 Processing in depth

 The stages of a natural language processing pipeline can be thought of as layers, like the layers in a feed-forward neural network. Deep learning is all about creating more complex models and behavior by adding additional processing layers to the conventional two-layer machine learning model architecture of feature extraction followed by modeling. In chapter 5, we explain how neural networks help spread the learning across layers by backpropagating model errors from the output layers back to the input layers. But here we talk about the top layers and what can be done by training each layer independently of the other layers.

 The top four layers in figure 1.4 correspond to the first two stages in the chatbot pipeline (feature extraction and feature analysis) in the previous section. For example, the part-of-speech tagging (POS tagging) is one way to generate features within the Analyze stage of our chatbot pipeline. POS tags are generated automatically by the default SpaCY pipeline, which includes all the top four layers in this diagram. POS tagging is typically accomplished with a finite state transducer like the methods in the nltk.tag package.

 Figure 1.4 Example layers for an NLP pipeline

 [image:]

