

 [image: cover]

 Swt/Jface in Action: GUI Design with Eclipse 3.0

 Matthew Scarpino, Stephen Holder, Stanford Ng & Laurent Mihalkovic

[image:]

Copyright

 For online information and ordering of this and other Manning books, please go to www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 209 Bruce Park Avenue Fax: (203) 661-9018
 Greenwich, CT 06830 email: orders@manning.com

 ©2005 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books they publish printed
 on acid-free paper, and we exert our best efforts to that end.

 [image:]

	Manning Publications Co.
209 Bruce Park Avenue
Greenwich, CT 06830

	 Copyeditor: Tiffany Taylor
 Typesetter: Tony Roberts
 Cover designer: Leslie Haimes

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 Chapter 1. Overview of SWT and JFace

 Chapter 2. Getting started with SWT and JFace

 Chapter 3. Widgets: part 1

 Chapter 4. Working with events

 Chapter 5. More widgets

 Chapter 6. Layouts

 Chapter 7. Graphics

 Chapter 8. Working with trees and lists

 Chapter 9. Tables and menus

 Chapter 10. Dialogs

 Chapter 11. Wizards

 Chapter 12. Advanced features

 Chapter 13. Looking beyond SWT/JFace: the Rich Client Platform

 Appendix A. Creating projects with SWT/JFace

 Appendix B. OLE and ActiveX in SWT/JFace

 Appendix C. Changeable GUIs with Draw2D

 Appendix D. The Graphical Editing Framework (GEF)

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 Chapter 1. Overview of SWT and JFace

 1.1. What is SWT/JFace?

 1.1.1. Building GUIs with SWT

 1.1.2. Simplifying GUI development with JFace

 1.2. Looking under the hood

 1.2.1. The old standby: Swing

 1.2.2. The newcomer: SWT/JFace

 1.2.3. The SWT/Swing debate

 1.3. SWT/JFace: licensing and platform support

 1.3.1. The Common Public License

 1.3.2. Platforms supported

 1.4. The WidgetWindow

 1.5. Summary

 Chapter 2. Getting started with SWT and JFace

 2.1. Programming in SWT

 2.1.1. The HelloSWT program

 2.1.2. The Display class

 2.1.3. The Shell class

 2.2. Programming in SWT/JFace

 2.2.1. Model-based adapters

 2.2.2. The HelloSWT_JFace program

 2.2.3. Coding in JFace and SWT/JFace

 2.2.4. The ApplicationWindow class

 2.3. Beginning the WidgetWindow application

 2.4. Summary

 Chapter 3. Widgets: part 1

 3.1. Introducing the Widget and Control classes

 3.1.1. Understanding the Widget class

 3.1.2. Working with Control objects

 3.2. Labels

 3.2.1. Styles and separators

 3.2.2. Label methods

 3.3. Involving the user with buttons

 3.3.1. Causing action with push buttons and SWT.PUSH

 3.3.2. Moving on with arrow buttons and SWT.ARROW

 3.3.3. Changing state with toggle buttons and SWT.TOGGLE

 3.3.4. Choosing with check buttons and SWT.CHECK

 3.3.5. Making a single choice with radio buttons and SWT.RADIO

 3.4. Containing components with Composites

 3.4.1. Understanding the Composite class

 3.4.2. Groups

 3.4.3. SashForms

 3.4.4. TabFolders

 3.5. Updating WidgetWindow

 3.5.1. Creating the Ch3_Composite class

 3.5.2. Creating the WidgetWindow TabFolder

 3.6. Summary

 Chapter 4. Working with events

 4.1. Event processing in SWT

 4.1.1. Using typed listeners and events

 4.1.2. Adapters

 4.1.3. Keyboard events

 4.1.4. Customizing event processing with untyped events

 4.1.5. An SWT listener/event application

 4.2. Event processing in JFace

 4.2.1. Understanding actions and contributions

 4.2.2. Creating Action classes

 4.2.3. Implementing contributions in an ApplicationWindow

 4.2.4. Interfacing with contributions

 4.2.5. Exploring the Action class

 4.3. Updating the WidgetWindow

 4.3.1. Building the chapter 4 Composite

 4.3.2. Adding Ch4_Composite to the WidgetWindow

 4.4. Summary

 Chapter 5. More widgets

 5.1. Editing text with SWT

 5.1.1. The basic Text widget

 5.1.2. The StyledText widget

 5.2. JFace text support

 5.2.1. Obtaining the JFace text packages

 5.2.2. TextViewer and Document

 5.2.3. A JFace example

 5.3. The Combo widget

 5.4. ToolBarManager

 5.4.1. ControlContribution

 5.4.2. Creating toolbars by hand

 5.5. CoolBar

 5.6. Slider

 5.7. ProgressBar

 5.8. ProgressIndicator

 5.9. Summary

 Chapter 6. Layouts

 6.1. The fill layout

 6.2. The row layout

 6.2.1. Customizing individual layout cells

 6.3. The grid layout

 6.3.1. GridData

 6.4. The form layout

 6.4.1. Using FormData

 6.4.2. Specifying relations using FormAttachment

 6.4.3. Laying out controls using a form layout

 6.5. Custom layouts

 6.5.1. Calculating the layout’s size

 6.5.2. Laying out the widgets

 6.5.3. Updating WidgetWindow

 6.6. Summary

 Chapter 7. Graphics

 7.1. The graphic context

 7.1.1. Creating a GC object

 7.1.2. Drawing shapes on a Canvas

 7.1.3. Painting and PaintEvents

 7.1.4. Clipping and Canvas styles

 7.2. Programming with colors

 7.2.1. Color development with SWT

 7.2.2. Additional color capability with JFace

 7.3. Displaying text with fonts

 7.3.1. Using fonts with SWT

 7.3.2. Coding with fonts

 7.3.3. Improved font management with JFace

 7.4. Incorporating images in graphics

 7.4.1. Allocating images

 7.4.2. Coding graphics with images

 7.4.3. Creating a bitmap with ImageData

 7.4.4. Manipulating images with ImageData

 7.4.5. Managing images with JFace

 7.5. Updating the WidgetWindow

 7.5.1. Building the chapter 7 composite

 7.5.2. Adding Ch7_Composite to the WidgetWindow

 7.6. Summary

 Chapter 8. Working with trees and lists

 8.1. Viewers and the Viewer framework

 8.1.1. Providers

 8.1.2. Listeners

 8.1.3. Filters and sorters

 8.2. Trees

 8.2.1. SWT trees

 8.2.2. JFace TreeViewers

 8.3. Using the List widget

 8.3.1. SWT lists

 8.3.2. JFace ListViewers

 8.4. Updating WidgetWindow

 8.5. Summary

 Chapter 9. Tables and menus

 9.1. Tables

 9.1.1. Understanding SWT tables

 9.1.2. JFace TableViewers

 9.2. Creating menus

 9.2.1. Accelerator keys

 9.2.2. Creating menus in SWT

 9.2.3. Using JFace actions to add to menus

 9.3. Updating WidgetWindow

 9.4. Summary

 Chapter 10. Dialogs

 10.1. SWT dialogs

 10.1.1. ColorDialog

 10.1.2. DirectoryDialog

 10.1.3. FileDialog

 10.1.4. FontDialog

 10.1.5. MessageBox

 10.2. JFace dialogs

 10.2.1. Message dialogs

 10.2.2. Error dialogs

 10.2.3. Input dialogs

 10.2.4. Progress monitor dialogs

 10.2.5. Custom dialogs

 10.3. Updating WidgetWindow

 10.4. Summary

 Chapter 11. Wizards

 11.1. Multipage dialogs

 11.1.1. IDialogPage

 11.1.2. IWizardPage

 11.1.3. WizardPage

 11.2. The wizard

 11.2.1. IWizard

 11.2.2. Wizard

 11.3. Putting it all together

 11.3.1. Wizard containers

 11.3.2. WizardDialog

 11.4. Combining wizards

 11.4.1. WizardSelectionPage

 11.4.2. IWizardNode

 11.5. Persistent wizard data

 11.5.1. DialogSettings

 11.6. Updating WidgetWindow

 11.7. Summary

 Chapter 12. Advanced features

 12.1. Transferring data

 12.1.1. The Transfer class

 12.1.2. Drag-and-drop capability

 12.1.3. Using the clipboard

 12.1.4. The filesystem browser

 12.2. Preferences

 12.2.1. Preference pages

 12.2.2. Field editors

 12.2.3. Preference page containers

 12.2.4. Persistent preferences

 12.3. Label decorators

 12.3.1. ILabelDecorator

 12.3.2. DecoratingLabelProvider

 12.3.3. An example

 12.4. The Browser widget

 12.5. Summary

 Chapter 13. Looking beyond SWT/JFace: the Rich Client Platform

 13.1. Understanding RCP workbenches

 13.1.1. Entering data with editors

 13.1.2. Displaying information with views

 13.1.3. Combining editors and views with perspectives

 13.2. RCP: Looking under the hood

 13.2.1. Creating and configuring an RCP project

 13.2.2. Building the application class

 13.2.3. Adding a WorkbenchAdvisor

 13.3. Adding views and perspectives

 13.3.1. Building views

 13.3.2. Arranging workbench windows with a perspective

 13.3.3. Executing an RCP application

 13.3.4. Reviewing the RCP process

 13.4. Populating forms with Eclipse Forms widgets

 13.4.1. Using FormToolkit and the Eclipse Forms containers

 13.4.2. Firing text-based events with Hyperlinks

 13.5. Building a standalone RCP application

 13.5.1. Exporting RCPExample to an application directory

 13.5.2. Adding plug-ins to the application directory

 13.5.3. Executing the application

 13.6. Summary

 Appendix A. Creating projects with SWT/JFace

 A.1. Eclipse-based SWT/JFace development

 A.1.1. SWT and JFace projects in Windows

 A.1.2. SWT and JFace projects in *nix

 A.1.3. SWT in OS X

 A.2. SWT/JFace in standalone applications

 Appendix B. OLE and ActiveX in SWT/JFace

 B.1. COM simplified

 B.1.1. IUnknown/IDispatch

 B.1.2. Object hosting

 B.1.3. Object instantiation

 B.1.4. Event handling

 B.1.5. Threading model

 B.2. The SWT COM library

 B.2.1. The native language support library

 B.2.2. The Java COM library

 B.3. Doing COM with SWT

 B.3.1. A simple example

 B.3.2. SWT COM programming patterns

 B.3.3. Advanced topics

 B.3.4. A final example

 Appendix C. Changeable GUIs with Draw2D

 C.1. Understanding Draw2D

 C.1.1. Using Draw2D’s primary classes

 C.1.2. The Flowchart application

 C.2. Draw2D Figures

 C.2.1. Figure methods

 C.2.2. Using Labels and Clickables

 C.3. Using LayoutManagers and panes

 C.3.1. Understanding LayoutManager subclasses

 C.3.2. LayeredPanes

 C.3.3. ScrollPanes and Viewports

 C.4. Using the Graphics class to create Shapes

 C.4.1. Using the Graphics class

 C.4.2. Draw2D geometry and graphs

 C.5. Understanding Connections

 C.5.1. Working with ConnectionAnchors

 C.5.2. Adding Connections to the GUI

 C.6. Putting it all together

 C.6.1. Drag-and-drop in Draw2D

 C.6.2. Creating Figures with a FigureFactory

 C.6.3. The Flowchart class

 Appendix D. The Graphical Editing Framework (GEF)

 D.1. A GEF overview

 D.1.1. Separation of concerns theory

 D.1.2. Separation of concerns: GEF implementation

 D.1.3. MVC interaction

 D.1.4. Building the flowchart editor

 D.2. Creating the FlowchartProject

 D.2.1. Configuring the Plugin.xml file

 D.2.2. Adding class libraries

 D.2.3. Adding packages and classes

 D.3. Creating the editor’s PaletteViewer

 D.3.1. Handling events with the ToolEntry and Tool classes

 D.3.2. Creating components with templates

 D.4. The Model aspect: Model classes

 D.4.1. Model classes and JavaBeans

 D.4.2. The AbstractChartElement class

 D.4.3. The Chart class

 D.4.4. The Activity class

 D.4.5. The Path class

 D.5. Changing Model properties with Commands

 D.5.1. Commands and CommandStacks

 D.5.2. The CreateCommand class

 D.5.3. The PathCommand class

 D.5.4. The DeleteCommand class

 D.5.5. The SetConstraintCommand class

 D.6. The Controller aspect: EditPart classes

 D.6.1. Creating new EditParts with EditPartFactory objects

 D.6.2. The ChartPart class

 D.6.3. The ActivityPart class

 D.6.4. The PathPart class

 D.7. Creating Commands with EditPolicy objects

 D.7.1. The getCommand() method

 D.7.2. GEF policies in the flowchart editor

 D.8. Adding Actions to the editor

 D.8.1. The ActionRegistry and ContextMenus

 D.8.2. Redirecting Workbench actions with RetargetAction

 D.9. Editing with GEF: two examples

 D.9.1. Example 1: deleting a component with a keystroke

 D.9.2. Example 2: how connections are created

 D.10. Introducing the EditorPart

 D.10.1. Working with EditorParts and GraphicalEditors

 D.10.2. Understanding the GraphicalViewer

 D.10.3. The FlowchartEditor

 D.11. Other GEF aspects

 D.11.1. Accessibility

 D.11.2. Grid layout

 D.11.3. Zooming in and out

 D.11.4. Kudos to Randy Hudson

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 We developed this book with one primary goal in mind: to introduce the SWT and JFace toolsets as simply and as thoroughly
 as possible. Although the available documentation covers many aspects of the two libraries, we were disappointed by the amount
 (particularly in graphics) that has gone undocumented. So, we came together in late 2003 to create an approachable book that
 covers both the high-level theory and the low-level details of the combined SWT/JFace development tools.

 Thanks to the hard work of the folks at eclipse.org, SWT and JFace have recently received quite a bit of attention and debate
 within the Java community. Most of this discussion has focused on the relative merits of Swing as a standard component of
 the Java 2 platform, versus SWT as a nonstandard library that uses native code—an approach foreign to the “write once run
 anywhere” mantra embraced by most Java developers. Although Swing has many strengths, we believe that SWT and JFace together
 provide a compelling alternative for developing the user interface of many types of applications.

 We wrote this book not only for Swing developers but also for new Java users who want to build applications that reach beyond
 the command line. Toward this end, we present code samples and also do our best to explain the general theories behind graphical
 user interface construction. In particular, we’ve gone into great depth concerning the Model-View-Controller paradigm, which
 greatly improves both the reliability and maintainability of graphical applications.

 Our goal is to share our SWT experience with you, help you decide if SWT and JFace make sense for your project, and help you
 to make effective use of these technologies.

Acknowledgments

 The authors would like to acknowledge and thank the people who made this book a reality:

 First, we’d like to express our appreciation to Marjan Bace, publisher of Manning, for this opportunity, and to his staff,
 Clay Andres, Susan Capparelle, and Dave Roberson, for their support throughout the process. Our heartfelt thanks go to Jacquelyn
 Carter, our beleaguered and ever-patient developmental editor who put up with all our whining and last-minute changes. We
 particularly want to recognize the hard work put in by the production team: Mary Piergies, Tiffany Taylor, and Tony Roberts.
 Their efforts have provided the professionalism and polish that has kept this book to its high production standard.

 Next, we want to extend our sincere appreciation to our diligent reviewers: Phil Hanna, Christophe Avare, Frank Jania, Ted
 Neward, Dan Dobrin, Ryan Lowe, Steve Gutz, Carl Hume, Ed Burnette, Charles Bundy, and Robert McGovern. Their feedback and
 encouragement helped us tremendously and in many cases guided the direction of the book’s content. We’re particularly grateful
 for the technical reviewing of Phil Hanna. There’s nothing worse than a programming book with poor code, and his exacting
 tests ensured that our code will work as promised.

 We also want to thank the Eclipse.org community in general. Not only have they produced a quality product, but this book wouldn’t
 be possible without their dedication to technical support. Their programmers have promptly and thoroughly answered our many
 questions, and their documentation has provided a great deal of assistance. Of course, we’re also indebted to the Eclipse
 developers for making their code open source, thereby giving us the means to look under the hood and discover exactly how
 the SWT/JFace mechanisms function.

 Finally, we’d like to thank you for purchasing our book. We hope you enjoy it as much as we’ve enjoyed creating it, and we
 wish you the best of luck coding with SWT/JFace!

About this Book

 This book is written with the intermediate to advanced Java programmer in mind. We assume that you’re familiar with the basics
 of Java syntax and comfortable considering design alternatives where there may not be a single choice that is superior in
 all situations.

 Having some experience with developing graphical applications, whether in Java or any other language, will be helpful but
 isn’t necessary. We define all terms as they’re introduced and attempt to point out the purpose behind each widget as well
 as discuss the technical details of how to use it. However, this isn’t a book about user interface design, so we won’t attempt
 to cover the myriad details that go into assembling a compelling user experience out of the widgets we present.

 We assume that most readers have some experience with Swing, but such experience isn’t necessary to fully enjoy this book.
 We attempt to draw comparisons to Swing where we feel that doing so imparts additional understanding for Swing veterans, but
 these comparisons are secondary to the main discussion of each topic. We have made sure you can understand every topic in
 this book without having programmed a single line of Swing code.

Roadmap

 This book is structured around the development of a sample application—the Widget Window—that shows off the details of each
 component included in SWT and JFace. The application consists of a series of tabs, one for each chapter. At the end of each
 chapter, we present code that you can drop into the overall project to add another tab. Where the initial chapters develop
 the foundation of the application, the code for the later chapters can stand on its own without needing that from the preceding
 chapters. We hope this approach lets you focus on the topics that are of particular interest to you, using the framework of
 the Widget Window application to play with the code and see the effects of different parameters on each component.

 Beyond a general introduction to the tools, we cover several specific aspects of SWT/JFace:

	
The relationship between SWT and JFace— When you first approach these two libraries, it’s difficult to know when to use one over the other, or why JFace exists. We
 explain the seeming redundancies between the two libraries and demonstrate the trade-offs in coding with one or the other.

 	
Rules of thumb concerning GUI development— Having used these tools extensively, we’ve found a number of routines that simplify the process of creating GUIs. We’ve also
 encountered a number of places where SWT/JFace’s operation differs from its documentation. In each case, we provide explanations
 and practical examples to help you avoid these pitfalls and create reliable SWT/JFace applications.

 	
Cross-platform development— Between SWT and JFace, you can find many different ways to build the same user interface. However, some methods translate
 well across operating systems, and some don’t. Throughout this book, we present screenshots on multiple windowing platforms
 to show you how your application will appear.

 	
Practical code examples— When we came up with the example code in this book, we held two priorities in mind: We kept them concise, for hands-on readers;
 and we made them modular, so you can use them in SWT/JFace applications you build in the future.

 	
Toolsets that build on SWT/JFace— We’re excited to present the first thorough walkthrough of the Draw2D and Graphical Editor Framework (GEF) toolsets. These
 libraries, which build on the capabilities of SWT and JFace, greatly extend the power and flexibility of GUI design.

Chapter 1, “Overview,” presents the history of SWT and JFace and places these technologies in context. We present an overview of the history of
 graphical user interface development using Java and discuss the organization of the various classes and packages within SWT
 and JFace.

 Chapter 2, “Getting started with SWT/JFace,” shows you how to set up a project to use SWT and JFace, either within the Eclipse IDE or as a standalone project built from
 the command line. After showing how to implement a traditional “Hello World” application using SWT and JFace, we introduce
 the basic framework on which the Widget Window will be built.

 Chapter 3, “Widgets: part 1,” discusses the inheritance hierarchy used by the SWT and JFace classes. We also discuss several concepts common to all widgets
 within SWT and show how to use some basic, common widgets such as buttons and labels.

 Chapter 4, “Working with events,” explains how to enable your application to react appropriately when the user takes an action such as clicking a button on
 the screen. We show the details of low-level event classes in both SWT and JFace and discuss the higher-level Action framework
 that makes handling events easier.

 Chapter 5, “More widgets,” dives back in to the discussion of individual components provided by SWT. Most important, we discuss how to let users edit
 text within your application, and we cover a variety of useful widgets that are often used in user interfaces.

 Chapter 6, “Layouts,” takes a break from the details of individual widgets to discuss ways to organize widgets on the screen. After covering the
 built-in layout managers provided by SWT, we show how to create a custom layout manager if the default ones don’t meet the
 needs of your application.

 Chapter 7, “Graphics,” covers low-level SWT facilities for drawing graphics by hand. In addition, we show how to programmatically manipulate colors,
 fonts, and images from within SWT.

 Chapter 8, “Working with trees and lists,” introduces the Viewer framework, a set of classes and interfaces provided by JFace to make working with data easier. We use
 this discussion of viewers and their related classes to show you how to easily work with tree and list widgets.

 Chapter 9, “Tables and menus,” continues the Viewer framework discussion from chapter 8 and includes several advanced features of the framework. We show how these features enable you to create tables that users
 can easily and intuitively edit. The chapter ends with a discussion of menus and how they tie into the action classes from
 chapter 4.

 Chapter 10, “Dialogs,” covers ways to create dialog boxes in both SWT and JFace. We discuss the dialog boxes provided by SWT and JFace and show
 how to create your own dialogs when necessary.

 Chapter 11, “Wizards,” shows how to use the framework provided by JFace to create a wizard that guides the user through a series of steps.

 Chapter 12, “Advanced features,” covers a variety of miscellaneous features. These are important topics to understand in order to fully master SWT and JFace,
 but they aren’t essential to get a basic application running. We discuss subjects such as implementing drag and drop, interacting
 with the operating system’s clipboard, and embedding a web browser in your application.

 Chapter 13, “Looking beyond SWT/JFace: the Rich Client Platform,” shows how to build custom workbench applications that contain editors and views. In addition, this chapter presents the new
 Eclipse Forms toolset for designing form-like applications.

 Appendix A, “Creating projects with SWT/JFace,” shows how set up a Java project that uses SWT and JFace. Specifically, it covers how to find the necessary libraries and
 set up common IDEs such as Eclipse.

 Appendix B, “OLE and ActiveX in SWT/JFace,” covers facilities provided by SWT for integrating with the Windows operating system. Obviously, the techniques we discuss
 in this appendix are relevant only to developers willing to tie themselves closely to one operating system; as such, they
 may not be of interest to some readers.

 Appendix C, “Changeable GUIs with Draw2D,” shows a framework you can use to create custom widgets for use in SWT. We cover the creation of a custom widget used in appendix D.

 Appendix D, “The Graphical Editing Framework (GEF),” covers the most complicated topic in this book and requires knowledge of almost every aspect of JFace as well as the Eclipse
 Workbench. GEF is a powerful framework that you can use to create to create powerful graphical editors for your applications.
 This appendix uses the custom widget developed in appendix C to create a flowchart editor application.

 If you have any questions or concerns about our content, visit the www.manning.com/scarpino web site. From there, we can answer questions and provide further explanations. We also provide our example code for download.

Conventions

 Throughout this book, the text follows certain conventions. Method and variable names appear in monotype font in the text. Code snippets that illustrate a technique in context without necessarily covering every detail required
 to get the code to compile are also presented in monotype font, as are full code listings. Any code listing (preceded by a “Listing X.Y” header) can be typed in, compiled, and run
 as is.

 We also present several UML diagrams in this book. These diagrams are in the spirit of what Martin Fowler refers to as “UML
 as sketch”—they aren’t full-blown, comprehensive diagrams that cover every member variable and private method of the classes
 in question. Rather, they’re intended to convey essential information about the relationship between certain classes and interfaces
 at a high level. The text and code samples around each diagram discuss the low-level details necessary to make effective use
 of the classes presented in the diagrams.

Source code downloads

 Source code for the programming examples in this book is available for download from the publisher’s web site at www.manning.com/scarpino.

Author Online

 Purchase of SWT/JFace in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/scarpino. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s web site as long
 as the book is in print.

About the Authors

 MATT SCARPINO has more than 10 years of software design and engineering experience. He uses Eclipse to build editing software for reconfigurable
 computing and has submitted code for Eclipse’s graphical library. He lives in Fort Worth, Texas.

 STEPHEN HOLDER is a software engineer who has worked as a consultant for several large commercial and government agencies on enterprise-level
 Java projects, including writing Eclipse plug-ins to streamline the development process. He currently resides in Tustin, California.

 STANFORD NG is the cofounder of Nuglu, LLC and is currently working on improving back-end systems at Automotive.com, a top-5 automotive
 e-commerce site. He is also a co-conspirator with Dr. Robert Nideffer behind the International award-winning Proxy/MAM research
 project. He lives in Irvine, California.

 LAURENT MIHALKOVIC is a technology consultant with 10 years’ experience designing solutions in C/C++/Java/COM. He currently lives between Vancouver
 and Toronto, Canada.

About the Title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and to explore new
 ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or to
 solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they
 want it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of SWT/JFace in Action is a “Femme Patagonne,” a woman from Patagonia, an area of breathtaking natural beauty in the southern regions of Argentina
 and Chile. From the towering tips of the Andes to the sweeping vistas of the central plains to the pristine beaches on both
 coasts, Patagonia is a land of stark contrasts. Sparsely populated even today, it has become the ultimate destination for
 modern-day adventurers.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel guides
 such as this one were popular, introducing both the tourist as well as the armchair traveler to inhabitants of faraway places.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
 The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
 our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Chapter 1. Overview of SWT and JFace

	

 This chapter covers

	The purpose of SWT and JFace

 	The reasons for their creation

 	How the two libraries differ from Swing

 	Licensing and platform support

	

In March 2004, the Java Developer’s Journal announced the results of its Readers’ Choice Award for Best Java Component. More than 15,000 developers voted for one of
 many Java toolsets, including offerings from such established names as Oracle and Apple. But in the end, Eclipse’s Standard
 Widget Toolkit (SWT) won handily, just as it did in 2003. Despite their late entry into the field of Java development, Eclipse
 and SWT have also won awards and recognition from JavaWorld, JavaPro, and LinuxWorld.

 This well-earned applause goes a long way in showing the impact these tools have made on Java development. Java programmers
 around the world have embraced the power and versatility of SWT and JFace, deploying new plug-ins and standalone applications
 with each passing day. The goal of this book is to show you how this toolset functions and how you can use these tools for
 your own applications.

 In particular, you’ll be able to

	Develop SWT/JFace-based applications with hands-on code examples

 	Create customized graphics with SWT’s built-in graphical context

 	Understand the structure and methodology behind the SWT/JFace API

 	Further your knowledge of GUI (graphical user interface) design

 	Build and deploy SWT/JFace applications for Eclipse and standalone usage

Most important, GUI development should be fun! No other branch of programming provides the same satisfaction as watching a
 new graphical interface spring to life. Therefore, we’ll intersperse the theory of SWT and JFace with example code showing
 practical GUI development.

 But before we start programming, we need to show you what this new technology is all about and what tasks it will help you
 perform.

1.1. What is SWT/JFace?

 Although we refer to SWT and JFace as tools or toolsets, they’re essentially software libraries. They consist of packages that contain Java classes and interfaces. But what makes
 these components so special is that you can combine them to form GUIs. And not just any GUIs, either! Your applications will
 run quickly, make effective use of computer memory, and, like chameleons, assume the look and feel of whichever Java-supported
 operating system they run on. No other GUI-building library can say that.

 Although SWT and JFace accomplish the same goal, they follow different philosophies in creating user interfaces. Our favorite
 analogy involves automobile transmissions. SWT development is like using a standard transmission: It gives you greater control and access to the system
 internals, but it’s more complicated to use. JFace, on the other hand, resembles an automatic transmission: It does most of
 the work for you, but you lose flexibility.

 Of course, the truth is more complicated than any analogy. So, let’s investigate these two libraries in greater depth.

 1.1.1. Building GUIs with SWT

 Every operating system contains a number of graphical components that make up its default user interface. These include buttons,
 windows, menus, and everything else you see on your computer screen. The goal of SWT is to give you, the Java programmer,
 direct access to these components so that you can configure and position them however you like.

 You don’t have to worry about the end user’s operating system. When you add an SWT Button object to your application, it will look and act like a Windows button on Windows, a Macintosh button on Macintosh, and a
 Linux button on a Linux system. Users will think that you wrote the GUI specifically for their machines, and they’ll have
 no idea that you wrote the code only once using SWT.

 In addition to graphical components, SWT also provides access to events. This means you can keep track of what buttons your
 users have clicked and which menu items they’ve selected. This powerful capability makes it possible to receive and respond
 to nearly every form of user input, and we’ll spend a great deal of time showing how this works.

 Finally, if you want to add graphics to your application, SWT provides a large set of tools for creating images, working with
 new fonts, and drawing shapes. This feature not only allows you to build new graphics, but also lets you control how, when,
 and where they’re displayed in your GUI. This book will show you how SWT manages colors, drawings, fonts, and images, and
 will present a great deal of example code.

 SWT provides a wealth of capabilities for building user interfaces, but as you’ll see in this book, the code can become lengthy
 and complex. For this reason, the Eclipse designers built a second library for GUI development: JFace.

 1.1.2. Simplifying GUI development with JFace

 Rather than write the same SWT code over and over again, the designers of the Eclipse Workbench created JFace. This library
 provides shortcuts around many of the tasks that can be time-consuming using SWT alone. But JFace is not a replacement for SWT, and many GUIs will need features from both toolsets.

 An important example of JFace’s increased efficiency involves events. In many user interfaces, you may have different events,
 such as button clicks, keystrokes, or menu selections, that all perform the same function. In SWT, each event needs to be
 received and handled separately. But JFace allows you to combine them into a single object, so you can concern yourself with
 the event’s response instead of the component that triggered it. This simple but powerful concept makes it possible to add
 context menus, toolbars, and palettes to your GUIs without adding a lot of code.

 JFace is also helpful when you’re building large GUIs that require multiple windows and graphics. It provides registry classes
 that help you organize SWT components and manage their memory allocation. For example, in SWT, you need to specifically create
 and deallocate every Font and Image in your application. But with JFace, you can use built-in FontRegistry and ImageRegistry objects to take care of these tedious concerns for you.

 Now that you understand the basic characteristics behind these two libraries, we need to dig a little deeper and show you
 the concepts behind their design. This discussion will explain why SWT/JFace GUIs are so fast, why they can take the appearance
 of whatever operating system they run on, and why they were created in the first place.

1.2. Looking under the hood

 Adding components, events, and graphics to a user interface isn’t a new idea. Therefore, to see why the SWT/JFace toolset
 has caused such a stir, you need to understand what its designers were thinking. This means investigating the principles behind
 Java GUI development and how these libraries make use of them.

 But before we can investigate SWT/JFace in depth, we need to introduce Swing. SWT and JFace were created in response to this
 library, and by understanding the contrast between the two design philosophies, you’ll better appreciate how SWT and JFace
 function. Further, in addition to recognizing the trade-offs between Swing and SWT/JFace, you’ll be able to participate in
 the passionate debates concerning the two.

 1.2.1. The old standby: Swing

 When Sun released the Swing library in 1998, the Java community was delighted. Finally, Sun had backed up its “Write Once,
 Run Anywhere” credo with a toolset capable of building platform-independent user interfaces. Swing quickly became the most
 popular tool for creating GUIs in Java.

 But as time went by, many developers became discontented. The qualities that made Swing so attractive initially also made
 for complex development and slow operation. For this reason, Java GUIs have found little use in desktop applications.

Swing rendering

 In order to ensure consistent appearance and operation across operating systems, Swing takes complete control of rendering
 its user interfaces. That is, the Java Virtual Machine (JVM) specifies every pixel of its components and controls their behavior.
 It still communicates with the underlying platform, but instead of using the operating system’s prebuilt objects, it creates
 everything from scratch.

 Because these components are implemented at a high level, they’re referred to as lightweight components. These components look the same on any operating system that supports the JVM. This cross-platform look-and-feel is shown
 graphically in figure 1.1, and it looks and behaves identically whether it’s running on Windows, Macintosh, or *nix platforms.

 Figure 1.1. This application will act and appear similarly on every platform supported by Swing.

 [image:]

 But this approach has drawbacks. Because the JVM micromanages every aspect of the GUI’s appearance and behavior, the application
 runs more slowly than if it relied on the operating system. Also, most users like the way their operating system looks and
 prefer that their Java applications resemble their other platform-specific (or native) applications.

Swing automatic garbage collection

 Keeping with Java’s promise of reliable computing, Swing uses Java’s automatic garbage collection (AGC) for its applications.
 This process spawns a thread, or daemon, that runs beneath the application layer and deallocates memory for objects that are no longer needed. It activates during
 program execution and functions independently of the developer. AGC is an important capability: If programmers don’t free
 their data, then other applications won’t be able to reclaim memory for their objects.

 The main advantage of AGC is that developers can concentrate on code design instead of keeping track of every object’s lifetime.
 The downside involves the unpredictable nature of the garbage-collection thread. The deallocation process leaves you no idea as to when it will take place. Also, AGC capabilities change from one JVM to the next and from one platform
 to the next. Therefore, given the time-intensive nature of creating and disposing objects within large applications, programs
 may behave erratically from system to system.

Swing design architecture

 Swing directs the GUI design process through an implementation of Model-View-Controller (MVC) architecture. MVC decomposes
 a user interface component into three parts: its state information, its displayed appearance, and its ability to react to
 outside events. These aspects are called the Model, View, and Controller, respectively. The Swing designers modified this methodology and created the Model-Delegate architecture, shown in figure 1.2. This architecture combines the component’s View and Controller aspects into a UI-Delegate. So, for each element of the user
 interface—button, frame, and label—Swing allocates memory for a model that contains the component’s state and the UI-Delegate,
 which controls its appearance and response to events.

 Figure 1.2. The design architecture of Swing GUIs. This diagram shows the relationship between classic MVC and Swing’s Model-Delegate
 method.

 [image:]

 By separating model information from appearance, Swing provides a programming methodology that ensures flexible, reusable
 code. But this capability also produces multiple objects for each widget that appears on the screen. As GUIs become more complex,
 this additional allocation and disposal can place a large burden on the processor.

 1.2.2. The newcomer: SWT/JFace

 The designers of Eclipse responded strongly to Swing’s complexity and execution issues. They wanted a tool that would enable
 a Java user interface to run on a desktop with the same performance as a native application. In fact, they wanted it so badly
 that they created their own libraries: SWT and JFace.

 Both Swing and SWT/JFace create Java-based, platform-independent GUIs. But their methods differ in nearly every other respect.

SWT/JFace rendering

 The most prominent aspect of SWT/JFace involves its direct access to the operating system. Rather than reinventing graphics
 for its GUIs, it uses heavyweight components from the underlying platform. This decision makes possible the speed and appearance of SWT/JFace user interfaces, as shown
 in figure 1.3.

 Figure 1.3. Example Eclipse GUIs for Windows XP and Linux (GTK). By using heavyweight components, they take the appearance of their host
 operating system.

 [image:]

 The communication between SWT/JFace and the operating system is performed using the Java Native Interface (JNI). We’ll explore this topic in greater depth in the next chapter, but a short description here is helpful. Since the
 original creators of Java knew that its applications would eventually need to access legacy code and operating systems, they
 provided a library of methods to call procedures in other languages (such as C and Fortran) from within a Java class. SWT/JFace
 relies on JNI to manage the operating system’s rendering instead of performing all the work by itself.

SWT/JFace resource management

 Another important characteristic of SWT/JFace is that it doesn’t rely on automatic garbage collection. At first, it may seem
 as though this will result in buggy code. However, you need to be careful when accessing operating system resources, and non-deterministic
 memory disposal can cause more problems than it solves. There are two reasons behind Eclipse’s decision to remove AGC from
 SWT/JFace:

	The process of automatically deallocating memory during program operation is unpredictable, giving no indication when a freed
 resource will be available. If an irregularity occurs during the deallocation process, the process may not finish. This is a minor concern
 when you’re dealing with simple data structures. But when these objects make up a large graphical application, memory allocation
 and deallocation become important tasks whose behavior you should fully understand.

 	Using AGC with operating system resources is difficult. Since Swing builds its lightweight components at such a high level,
 this isn’t as large a concern. However, automatic disposal of low-level resources, such as SWT’s widgets, is error-prone and
 erratic across different platforms. If these objects take too much time to be deleted, the memory leaks can crash the program.
 Or, if these resources are deallocated in the wrong order, then the system’s operation can grind to a halt.

To prevent the errors associated with automatic object disposal, SWT/JFace lets you determine when your resources should be
 deallocated. The toolset simplifies this process by providing dispose() methods within the component classes. Also, once you have freed a parent resource, its child resources will automatically
 be disposed of. As you’ll see in future chapters, this means that few explicit deallocation calls are necessary within most
 applications. You might call SWT/JFace’s resource management semi-automatic.

Simplicity of design and development

 GUI generation in Swing is performed with a Model-Delegate architecture, which creates different objects to represent different
 aspects of the GUI components. But this complexity isn’t suitable for all cases. Developers building simple button-and-label
 interfaces, as well as those just ascending the learning curve, don’t need this sophistication. At the other extreme, programmers
 building complex graphical editors and computer-aided design tools need more separation of GUI functions in order to allow
 for different views and designs.

 SWT and JFace make no rules regarding the design architecture of their components. This means that you can build GUIs with
 as much sophistication or simplicity as you prefer. Because Eclipse is easily extensible and the source code is always available,
 you can add whatever tools or modifications you like. In fact, a number of plug-ins have been developed to provide MVC wrappers
 for SWT/JFace components.

 1.2.3. The SWT/Swing debate

 Any casual web search for SWT and Swing will bring up a number of heated arguments regarding which toolset is superior. This controversy is unnecessary and counterproductive.
 SWT was created as an alternative to Swing, not as a replacement.

 Our goal in writing this section wasn’t to praise one tool over the other, but to explain how and why they work. Infighting
 between Java developers can only harm the effort to build freely available, platform-independent applications. The world is
 big enough for both SWT and Swing, and we hope the two camps will be able to put aside their differences and concentrate on
 improving the Java community as a whole.

1.3. SWT/JFace: licensing and platform support

 Before continuing with the code, we’d like to touch on two important concerns regarding building applications with SWT/JFace.
 The first involves the lack of strings attached to Eclipse and its development libraries, outlined in the Common Public License.
 This is important, and you should understand it if you’re looking to build commercial applications. The second concern deals
 with the platforms currently supported by Eclipse in general and SWT/JFace in particular.

 1.3.1. The Common Public License

 The Eclipse consortium has released Eclipse to the public under the terms of the Common Public License (CPL). This license
 is fully compliant with the Open Source Initiative (OSI) licensing scheme and allows full commercial use of the software by
 granting royalty-free source code and worldwide redistribution rights. This means anyone can use the source code, modify it,
 and sell the resulting product. More information is available at www.eclipse.org/legal/main.html.

 Although some components of the platform are distributed under specific licenses, the SWT and JFace toolsets are governed
 by the CPL. This makes it possible to develop commercial SWT/JFaces applications for all supported platforms.

 1.3.2. Platforms supported

 At the time of this writing, SWT/JFace development is available for a number of operating systems. Because it relies on particular
 windowing system functions, some platforms have multiple SWT implementations. Table 1.1 lists the operating systems and user interfaces supported by SWT/JFace.

 Table 1.1. Platforms supported by SWT/JFace

	
 Operating system

 	
 User interface

	Microsoft Windows XP, 2000, NT, 98, ME
 	Windows

	Microsoft Windows PocketPC 2002 Strong ARM
 	Windows

	Microsoft Windows PocketPC 2002 Strong ARM (J2ME)
 	Windows

	Red Hat Linux 9 x86
 	Motif, GTK 2.0

	SUSE Linux 8.2 x86
 	Motif, GTK 2.0

	Other Linux x86
 	Motif, GTK 2.0

	Sun Solaris 8 SPARC
 	Motif

	IBM PowerPC
 	Motif

	HP-UX 11i hp9000 PA-RISC
 	Motif

	QNX x86
 	Photon

	Mac OS
 	Carbon

On Linux, KDE support isn’t yet available. However, SWT/JFace applications can run under the KDE desktop provided that the
 GTK runtime libraries are also installed on the desktop. KDE is built on top of the Trolltech Qt toolkit, which is distributed
 under a more restrictive licence than the CPL. Should a KDE version of the SWT library be developed in the future, all existing
 SWT/JFaces applications would support it and inherit the native KDE look.

 Support for Microsoft Pocket PC 2002 is one of the hidden treasures of SWT. The SWT distribution provides support for the
 StrongARM processor in both Pocket PC 2002 and Smartphone 2002 devices. Thanks to its great flexibility, the SWT Pocket PC
 version can be run against both the familiar J2SE (the standard distribution of Java) and the J2ME Connected Limited Device
 Configuration (CLDC) profile for embedded devices. Coverage of how to build the SWT library for the CDLC profile and use it
 in conjunction with the IBM J9 VM is beyond the scope of the book. If you’re interested in exploring embedded development,
 visit the SWT newsgroup at the Eclipse Consortium web site (news://news.eclipse.org/eclipse.platform.swt).

 Support for the Windows operating systems includes an unforeseen bonus: You can embed ActiveX controls directly inside SWT
 container widgets. The Eclipse platform uses this facility to include support for web browsing by embedding the Microsoft WebBrowser control. You can find further details on ActiveX support in appendix B, “OLE and ActiveX in SWT/JFace.”

1.4. The WidgetWindow

 The best way to learn about the SWT/JFace toolset is to build GUIs that use its classes. With this priority in mind, we struggled
 to come up with an overarching project that would touch on the various aspects of SWT/JFace development. At first, we wanted
 to build something exciting, such as a web-enabled database display. But we decided that this would incorporate too much irrelevant
 code and place too large a burden on our hands-on readers.

 So, we’ve opted for a simple application that incorporates as many GUI elements as possible while minimizing the amount of
 code. We feel that a TabFolder object (described in chapter 3) will be the clearest manner of presenting the information in this book. Then, with each following chapter, we’ll add a new
 tab whose contents show the chapter’s subject. The fully designed application is shown in figure 1.4. Not the savviest at marketing, we call it the WidgetWindow.

 Figure 1.4. The WidgetWindow application. This overarching project will incorporate all the GUI and graphical elements presented in this book.

 [image:]

 Development of the WidgetWindow application serves a number of purposes. Of course, it provides a single application for integrating the different components
 within the SWT and JFace libraries. But it also gives you a repository of reusable SWT/JFace code. Because it’s a single project
 with multiple classes, as opposed to multiple projects with single classes, the WidgetWindow will ensure that you can reuse each part for your own user interfaces.

1.5. Summary

 The contents of the SWT and JFace libraries are effective for building user interfaces, but by themselves, they don’t constitute
 anything groundbreaking. There are still buttons, containers, labels, and menus that can be positioned and manipulated just
 as in other toolsets. Instead, the philosophy behind the toolset makes it revolutionary.

 SWT/JFace may not conform to every rule of Java ideology, but it fulfills the goals of open-source software to a much greater
 extent than Java, with its pseudo-proprietary development. Not only doesn’t SWT/JFace require any licences or royalties, but
 it also allows you, the developer, to charge these fees for software that you develop. If you have developed a new operating
 system and need a development tool to draw programmers to your platfrom, you can’t do much better than tailoring SWT and JFace
 for your system. If you’re building a new programming language and want something more than a command-line compiler and linker,
 the Eclipse platform, with SWT and JFace, is ideally suited to your task.

 When Java developers debate the merits of SWT/JFace over those of other toolsets, they consider the capabilities available
 now or within the next six months. This mindset overlooks the fact that SWT/JFace, like Eclipse, is developed in a truly bazaar-like
 fashion, with companies and individuals providing improvements from across the world. If the abundance of programmer hours
 can be correlated with future improvement, then SWT/JFace will be the hands-down victor as its evolution continues.

 Historically, software development has never been IBM’s strong suit. Therefore, we’d like to express our appreciation to whichever
 lateral thinker realized that helping the open source effort is the best way to add value to IBM hardware. Given the freedom
 and extensibility of Eclipse and SWT/JFace and the enthusiasm of its developers, we feel confident that this toolset will
 continue to benefit the open source development community in years to come.

 But enough backslapping. Let’s start building applications!

Chapter 2. Getting started with SWT and JFace

	

 This chapter covers

	The important classes of SWT: Display and Shell

 	An SWT programming example

 	The important class of JFace: ApplicationWindow

 	An SWT/JFace programming example

	

GUI programming is one of the most rewarding aspects of software development, but when you rely on graphics instead of the
 command line, there are important questions to be asked. How can your program access the widgets, containers, and events of
 the operating system? What software classes represent the different components in a GUI, and how can you manipulate them?

 The goal of this chapter is to answer the first question and begin answering the second. We’ll discuss the fundamental classes
 of both the SWT and JFace libraries and how they access operating system resources. This chapter presents two main code examples—HelloSWT.java and HelloSWTJFace.java—that show how to use the Standard Widget Toolkit (SWT) with and without the JFace library. We’ll examine these programs and
 draw conclusions about their underlying structures.

 This chapter will also begin adding code to the WidgetWindow project. This is a graphical interface that will combine all the SWT and JFace topics discussed in this book. We’ll build
 its frame here and update it in each chapter that follows. Because each chapter adds to this application, we recommend that
 you follow its development closely.

2.1. Programming in SWT

 Although we’ll use JFace shortly, this section focuses on programming with SWT alone. First, we’ll present the code for a
 basic GUI and examine its structure. Then, this section will describe the two fundamental classes of the toolset: Display and Shell. These classes provide the foundation on which widgets, containers, and events can be added.

	

Note

 In order to compile and execute the code in this book, you need to add the SWT/JFace Java libraries to the project and make
 the native graphic library available. This procedure is fully documented in appendix A, “Creating Projects with SWT/JFace.”

	

2.1.1. The HelloSWT program

 Before we explore SWT theory in detail, it will be helpful to prove in advance that it works. For this purpose, we present
 our first SWT GUI, HelloSWT.java, in listing 2.1. We encourage you to add this class to the com.swtjface.Ch2 package and execute the application.

 Listing 2.1. HelloSWT.java

 [image:]

 Although HelloSWT is a simple GUI, most SWT applications consist of the same three-part structure:

	

 [image:]
 The first part begins by creating an instance of the Display and Shell classes. As we’ll show shortly, this allows the GUI to access the resources of the underlying platform and create a primary
 window for viewing widgets.

 	

 [image:]
 The next section adds a Text widget to the shell. Although this is simple in Hello-SWT, this section usually requires the most effort in an SWT application. It deals with adding and configuring the building blocks
 necessary to provide the GUI’s function. Widgets and groups of widgets (in containers) are added as children of the shell. Listeners and events are defined for each widget that the user can act on. The code in this section also sets
 the parameters for these widgets, containers, and events to make sure they look and act as required. In this case, the pack() methods tell the Shell and Text components to use only as much space as they need.

 	

 [image:]
 The last part represents the operation of the GUI. Up to this point, all of the application’s code has done nothing more than
 initialize variables. But when the Shell’s open() method is invoked, the application’s main window takes shape and its children are rendered in the display. So long as the
 Shell remains open, the Display instance uses its readAndDispatch() method to keep track of relevant user events in the platform’s event queue. When one of these actions involves closing the
 window, the resources associated with the Display object (such as the Shell and its children) are deallocated.

Figure 2.1 shows an example of how the GUI should appear (in Linux/GTK).

 Figure 2.1. Simple but effective: the output of the HelloSWT code

 [image:]

 Congratulations! You’ve created your first graphical user interface with the SWT library. Before moving on to an application
 that uses both SWT and JFace, it’s important to further understand the classes we’ve used and the methods available for accessing
 and configuring them.

 2.1.2. The Display class

 Although the Display class has no visible form, it keeps track of the GUI resources and manages communication with the operating system. That
 is, it concerns itself with how its windows are displayed, moved, and redrawn. It also ensures that events such as mouse clicks
 and keystroke actions are sent to the widgets that can handle them.

Operation of the Display class

 Although the Display class may only appear in a few lines of your GUI code, it’s important to respect and understand its operation. It’s the workhorse
 of any SWT/JFace application, and whether you work with SWT/JFace or SWT alone, you must include an instance of this class
 in your program. This way, your interface will be able to use the widgets and containers of the operating system and respond
 to the user’s actions. Although most applications do little more than create a Display object and invoke a few of its methods, the role played by this class is sufficiently important to be worth describing in
 detail.

 The main task of the Display class is to translate SWT/JFace commands from your code into low-level calls to the operating system. This process comprises
 two parts and begins once the application creates an instance of the Display class. First, the Display object constructs an instance of the OS class, which represents the platform’s operating system (OS). This class provides access to the computer’s low-level resources
 through a series of special Java procedures called native methods. Then, like a switchboard operator, this Display object uses these methods to direct commands to the operating system and convey user actions to the application.

 As an example of a native method, the OS declaration for SetFocus() is shown here:

 public static final native int SetFocus (int hWnd);

 This method sets the focus on a window according to its handle, hWnd. Because of the native modifier, there is no Java code to specify its operation. Instead, this keyword tells the compiler that the method’s code
 is written in another language and resides in another file. In the case of HelloSWT.java and all SWT/JFace applications, this other language is C and the other file is the native graphics library you included in
 your project. The C code in the graphic library corresponding to the SetFocus() method is presented here:

 JNIEXPORT jint JNICALL OS_NATIVE(SetFocus)
 (JNIEnv *env, jclass that, jint arg0) {
 jint rc;
 NATIVE_ENTER(env, that, "SetFocus\n")
 rc = (jint)SetFocus((HWND)arg0);
 NATIVE_EXIT(env, that, "SetFocus\n")
 return rc;
}

 As shown, the C implementation of the Java SetFocus() method calls the operating system function SetFocus(). This isn’t a coincidence; this exact matching of SWT commands and operating system calls makes GUI debugging a straightforward
 process. As long as you can riddle out the Application Programming Interface (API) for your operating system, you can determine
 what is happening in your code. This example uses the Windows operating system, but the process is similar for all platforms
 supported by Eclipse.

 Another important point to consider is that, if any features in your operating system aren’t incorporated into SWT, you can
 use the Java Native Interface to add them yourself. All it requires is a native Java method in the SWT package and a C function
 in the native graphics library that calls the operating system.

Methods of the Display class

 Table 2.1 identifies and describes a number of methods that belong to the Display class. This isn’t a full listing, but it shows the methods vital for SWT/JFace GUIs to function and those necessary to implement
 particular capabilities in an application:

 Table 2.1. Important methods of the Display class and their functions

	
 Display method

 	
 Function

	Display()
 	Allocates platform resources and creates a Display object

	getCurrent()
 	Returns the user-interface thread

	readAndDispatch()
 	Display object interprets events and passes them to receiver

	sleep()
 	Display object waits for events

The first two methods must be used in any SWT-based GUI. The first, Display(), creates an instance of the class and associates it with the GUI. The second, get-Current(), returns the primary thread of
 the application, the user-interface thread. This method is generally used with the dispose() method to end the operation of the Display.

 The next two methods in the table enable the application to receive notifications from the operating system whenever the user
 takes an action associated with the GUI. Event processing, handlers, and listeners will be fully discussed in chapter 4. However, it’s important to understand the readAndDispatch() method, which accesses the operating system’s event queue and determines whether any of the user’s actions are related to
 the GUI. Using this method, the HelloSWT class knows whether the user has decided to dispose of the Shell. If so, the method returns TRUE, and the application ends. Otherwise, the Display object invokes its sleep() method, and the application continues waiting.

 Although the Display class is important, there is no way to directly see the effects of its operation. Instead, you need to use classes with visual
 representations. The most important of these is the Shell class.

 2.1.3. The Shell class

 Just as the Display class provides window management, the Shell class functions as the GUI’s primary window. Unlike the Display object, a Shell instance has a visual implementation, as shown in figure 2.1. The Shell class accesses the operating system through the OS class to an extent, but only to keep track of opening, activating, maximizing, minimizing, and closing the main window.

 The main function of the Shell class is to provide a common connection point for the containers, widgets, and events that need to be integrated into the
 GUI. In this respect, Shell serves as the parent class to these components. Figure 2.2 shows the relationship between an application’s operating system, Display, Shell, and their widgets.

 Figure 2.2. The class communication structure of an SWT user interface

 [image:]

 Every SWT/JFace application bases its widgets on a main Shell object, but other shells may exist in an application. They’re generally associated with temporary windows or dialog boxes,
 which will be discussed further in chapter 10. Because these shells aren’t directly attached to the Display instance, they’re referred to as secondary shells. Shells that are attached to the Display are called top-level shells.

 The Shell instance created in the HelloSWT application has a number of properties associated with it that allow users to alter its state or read information. These
 characteristics make up the component’s style. You can control a Shell’s style by adding a second argument to its constructor. Since the only argument in HelloSWT’s Shell declaration is the display, it receives the default style for top-level windows, called SHELL_TRIM. This combines a number of individual style elements and tells the application that the window should have a title bar (SWT.TITLE) and that the user can minimize (SWT.MIN), maximize (SWT.MAX), resize (SWT.RESIZE), and close (SWT.CLOSE) the shell. The other default shell style, DIALOG_TRIM, ensures that dialog shells have title bars, a border around the active area (SWT.BORDER), and the ability to be closed.

 Within your GUIs, you can set the style bits of the shell, or another widget, to whatever you prefer, and combine them with
 the | operator. In addition to the properties mentioned, you can also specify the shell’s modality, which restricts the user’s ability to alter the shell’s state. A modal dialog box commands the user’s attention by blocking
 all actions except those related to the dialog. It can’t be moved or resized, and the user can only close or cancel it using
 the buttons provided. Finally, since not every platform can render these properties in GUI components, you must understand
 that SWT treats style settings as guidelines instead of strict rules.

2.2. Programming in SWT/JFace

 With a clear understanding of SWT, learning JFace is straightforward. Although applications using both SWT and JFace have
 very different structures than those coded with SWT alone, the concepts underlying both libraries are similar. Like the preceding
 part, this section will provide a basic example of SWT/JFace code and explain its structure. Further, we’ll delve into an
 important class provided in the JFace library: ApplicationWindow.

 In chapter 1, we explained how JFace was constructed to simplify SWT development. We can now go into further depth by showing how its
 main classes work.

 2.2.1. Model-based adapters

 Eclipse documentation uses two terms to refer to JFace classes that work with SWT widgets: helper classes and model-based adapters. We’ve chosen to use the latter term in this book. This may be confusing because, in Java, an adapter is a class that provides additional event-handling capability to a widget. However, no self-respecting programmer will use
 helper classes, so we’ll call them model-based adapters, or JFace adapters.

 These adapters can be split into four categories, shown in table 2.2. We’ll further elaborate on each in future chapters, but we’ll briefly describe them here.

 Table 2.2. Categories of JFace adapters

	
 Adapter classification

 	
 Function

	Viewers
 	Separate a widget’s appearance and information

	Actions and contributions
 	Simplify and organize event-handling procedures

	Image and font registries
 	Manage the allocation/deallocation of fonts and images

	Dialogs and wizards
 	Extend the capability of SWT Dialogs for user interaction

The first and most widely used category of model-based adapters includes the Viewer classes, fully described in chapter 9. In SWT, the information and appearance of a GUI component are bound together. However, viewers separate these aspects and
 allow for the same information to be presented in different forms. For example, the information in an SWT tree can’t be separated
 from the tree object. But the same information in a JFace TreeViewer can be displayed in a TableViewer or a ListViewer.

 The next category involves Actions and Contributions, which are described in chapter 4. These adapters simplify event handling, separating the response to a user’s command from the GUI events that result in that response. This can be best explained with an example. In SWT, if four
 different buttons will close a dialog box, then you must write four different event-handling routines even though they accomplish
 the same result. In JFace, these four routines can be combined in an action, and JFace automatically makes the four buttons
 contributors to that action.

 The third category involves image and font registries, which are further explained in chapter 7. In SWT, it’s important to keep the number of allocated fonts and images to a minimum, since they require operating system
 resources. But with JFace registries, these resources can be allocated and deallocated when needed. Therefore, if you’re using
 multiple images and fonts, you don’t need to be concerned with manual garbage collection.

 The last group comprises JFace dialogs and wizards, described in chapters 10 and 11. These are the simplest adapters to understand, since they extend the capability of SWT dialogs. JFace provides dialogs that
 present messages, display errors, and show the progress of ongoing processes. In addition, JFace provides a specialized dialog
 called a wizard, which guides the user through a group of tasks, such as installing software or configuring an input file.

 2.2.2. The HelloSWT_JFace program

 The best way to learn about JFace is to write a program that uses its library. The code for the HelloSWT_JFace class is shown in listing 2.2. The output is similar to that of HelloSWT, but the program structure is very different.

 Listing 2.2. HelloSWTJFace.javaHelloSWTJFace.java

 [image:]

 Although the code for HelloSWTJFace.java is slightly longer than that of Hello-SWT.java, its structure is more clearly separated between the three class methods:

	

 [image:]
 The first method, HelloSWT_JFace(), constructs an instance of the main class. Any configuration or communication actions that need to be performed during allocation
 should be coded here. Because this is unnecessary for HelloSWT_JFace, this class only invokes the constructor of its superclass.

 	

 [image:]
 The createContents() method deals with designing the presentation of the window. Since the visual aspect of an ApplicationWindow can’t be directly accessed, this method associates a widget container called a Composite to control the GUI’s appearance. This container object serves as the parent of any GUI components that need to be added to
 the application. After all the widgets are created, configured, and added to the parent, createContents() returns the Composite to the main window for display.

 	

 [image:]
 The final part of this application, framed by the main() method, takes care of the actual operation of the GUI. After allocating resources for the ApplicationWindow, this method configures the window to appear until closed by invoking the setBlockOnOpen() method with a TRUE argument. Then, the ApplicationWindow’s open() method is called, displaying the window according to the Composite returned by the createContents() method. The code after the open() method only functions after the window is closed. Then, the program deallocates the GUI’s Display instance by using its dispose() method. Because every widget in HelloSWT_JFace is a child of the display, this disposal also deallocates every GUI component in the program.
 Once the code is compiled and the application is run, the result should look like the window shown in figure 2.3.

 Figure 2.3. The HelloSWTJFace.java code is very different from that of HelloSWT.java, but the results are similar.

 [image:]

2.2.3. Coding in JFace and SWT/JFace

 At this point, it’s helpful to contrast the code behind HelloSWT.java, programmed with SWT alone, and that of HelloSWTJFace.java, which uses both SWT and JFace. The main difference is that SWT combines the GUI’s appearance and operation in its Shell class, whereas SWT/JFace splits these aspects. This modular structure promotes code reuse and enables one developer to design
 the window’s view while another determines its behavior. The appearance is controlled by the Composite configured in the createContents() method, and the operation is performed mainly through the instance of the ApplicationWindow class. Because this class is so crucial in SWT/JFace applications, it’s important to examine its function in greater detail.

 2.2.4. The ApplicationWindow class

 Although we’ve just mentioned how the ApplicationWindow in HelloSWT_JFace differs from the Shell object in HelloSWT, both applications rely on Shell and Display objects to communicate with the operating system. An SWT/Face application still needs a separate Display instance, but the ApplicationWindow creates its own Shell whenever it’s constructed with a null argument. This class relationship is shown in figure 2.4. Although this may seem like an unnecessary complication, the benefits of using JFace windows become apparent when you’re
 building large user interfaces.

 Figure 2.4. JFace’s ApplicationWindow uses a separate Composite object to control its appearance.

 [image:]

 Like the model-based adapters mentioned in the beginning of this section, the ApplicationWindow serves as a JFace adapter on the Shell class and provides two main benefits. First, as mentioned, the ApplicationWindow separates the GUI’s appearance from its behavior. Second, it provides a number of additional ways to configure the window
 that are useful for designers. Although the Shell class has methods that change its size and style, those of the ApplicationWindow class allow for much more useful customization. These methods, which include those from the Window class, are listed in table 2.3.

 Table 2.3. Configuration methods of the ApplicationWindow class

	
 ApplicationWindow method

 	
 Function

	addMenuBar()
 	Configures the window with a top-level menu

	addToolBar()
 	Adds a toolbar beneath the main menu

	addStatusLine()
 	Creates a status area at the bottom of the window

	setStatus(String)
 	Displays a message in the status area

	getSeparator()
 	Returns the line separating the menu from the window

	setDefaultImage(Image)
 	Displays an image when the application has no shell

	setExceptionHandler (IExceptionHandler)
 	Configures the application to handle exceptions according to the specified interface

As shown in the table, the methods of an ApplicationWindow object make GUI programming much more convenient. You can quickly configure the window to include menu bars, toolbars, and
 status lines. These methods can also set the application’s exception handler and default image. In SWT, these capabilities need to be provided for and configured for each
 different shell you create. In JFace, this is performed automatically.

2.3. Beginning the WidgetWindow application

 Although the HelloSWT and HelloSWT_JFace classes are helpful for learning the basics of SWT/JFace programming, the toolset offers a great deal more functionality
 that we need to explore. Rather than rewrite the same code in multiple projects, we thought it would be best to build a single
 project and add classes to it with each chapter.

 To reduce the complexity of the WidgetWindow’s design, we decided to use both SWT and JFace. In this chapter, we’ll create the basic window, shown in listing 2.3. We strongly recommend that you add this class to your com.swtjface.Ch2 package.

 Listing 2.3. WidgetWindow.java

 package com.swtjface.Ch2;
import org.eclipse.swt.widgets.*;
import org.eclipse.jface.window.*;

public class WidgetWindow extends ApplicationWindow
{
 public WidgetWindow()
 {
 super(null);
 }
 protected Control createContents(Composite parent)
 {
 getShell().setText("Widget Window");
 parent.setSize(400,250);
 return parent;
 }
 public static void main(String[] args)
 {
 WidgetWindow wwin = new WidgetWindow();
 wwin.setBlockOnOpen(true);
 wwin.open();
 Display.getCurrent().dispose();
 }
}

 Figure 2.5 presents the unexciting but important output of the WidgetWindow class.

 Figure 2.5. The blank-slate WidgetWindow application

 [image:]

2.4. Summary

 Although you’ll have to wait until the next chapter to build something fun and exciting, you should have a solid grasp of
 the internals of SWT and JFace at this point. These libraries make it possible to access platform-specific resources in a
 platform-independent manner, and it’s important to understand the objects that make this possible.

OEBPS/01fig04_alt.jpg
=loix|

Chapter 3 | chapter 4 | Chapter 5 | Chapter 6 | Chapter 7 | Chapter 8 | Chapter 3 | chapter 10|

OEBPS/015fig01_alt.jpg
package com.swtjface.Ch2;
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;

ublic class HelloSWT
p

{
public static void main (String [] args)
{
Display display = new Display(); Allocation and
shell shell = new Shell(display); initialization

helloText .setText ("Hello SWTI"); to the shell

Text helloText = new Text (shell, SWT.CENTER); }ﬂ Adding widgets
helloText pack () ;

shell.pack() ;
shell.open();
while (1shell.isDisposed())

{ GUI operation
if (1display.readandbispatch())
aisplay.sleep() ;
}

display.dispose () ;

OEBPS/01fig02.jpg
View
Model provides display
holds state

information

Controller
reacts o input

OEBPS/01fig03_alt.jpg
Windows SWT Example

=lolx)
* Chocsoonagn; ——

© et

Linux SWT Example

Choose an option:

Olchocel]
€ oz O chocez
€ oy Ocnaces
s o xange SWT et b Buont
i 1 exampie SWT text
Bsrz
Bers

OEBPS/copyrig01.jpg

OEBPS/01fig01.jpg
5] Example Swing Application & B

his is the default Swing look and feel.

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/infin.jpg

OEBPS/circle_1.jpg

OEBPS/circle_3.jpg

OEBPS/circle_2.jpg

OEBPS/cover.jpg
Ul Design with Edipse 30

WT/JFace
INACTION

Matthew Scarpino
Stephen Holder
Stanford Ng
Laurent Mihalkovic

L | FTYTH

OEBPS/02fig02.jpg
Widgets

Shell class

Display class

0S class.

Operating system

OEBPS/02fig01.jpg

OEBPS/02fig03.jpg

OEBPS/021fig01_alt.jpg
package com.swtjface.Ch2;

import
import
import

public

org.eclipse.jface.window.*;
org.eclipse.swt.*;
org.eclipse.swt.widgets.*;

class HelloSWT_JFace extends ApplicationWindow

{

public HelloSHT_dFace ()

{ }/0 Window allocation
super (null) ;
i

protected Control createContents (Composite parent)

{

Text helloText = new Text (parent, SWT.CENTER);
helloText .setText ("Hello SWT and JFacel®);

dow

parent.pack(); presentation
retumn parent;
}
public static void main(string[] args)
{
HelloSWT_gFace awin = new HelloSWT_JFace () ; Window
awin. setBlockonopen (true) ; operation

awin.open () ;
Display.getCurrent () .dispose () ;

OEBPS/02fig05.jpg
indow

OEBPS/02fig04.jpg
Widgets

Composite Class

ApplicationWindow class

Shell created by the Application Window

Display class

0S class

Operating system

