

 [image: cover]

CMIS and Apache Chemistry in Action

 Florian Müller, Jay Brown, and Jeff Potts

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Karen G. Miller
Technical proofreader: David Caruana
Copyeditors: Benjamin Berg, Andy Carroll
Proofreader: Katie Tennant
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617291159

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Understanding CMIS

 Chapter 1. Introducing CMIS

 Chapter 2. Exploring the CMIS domain model

 Chapter 3. Creating, updating, and deleting objects with CMIS

 Chapter 4. CMIS metadata: types and properties

 Chapter 5. Query

 2. Hands-on CMIS client development

 Chapter 6. Meet your new project: The Blend

 Chapter 7. The Blend: read and query functionality

 Chapter 8. The Blend: create, update, and delete functionality

 Chapter 9. Using other client libraries

 Chapter 10. Building mobile apps with CMIS

 3. Advanced topics

 Chapter 11. CMIS bindings

 Chapter 12. Security and control

 Chapter 13. Performance

 Chapter 14. Building a CMIS server

 Appendix A. Apache Chemistry OpenCMIS components

 Appendix B. BNF

 Appendix C. CMIS cheat sheet

 Appendix D. Building web applications with JavaScript

 Appendix E. References and resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover Illustration

 1. Understanding CMIS

 Chapter 1. Introducing CMIS

 1.1. What is CMIS?

 1.1.1. About the specification

 1.1.2. What does CMIS do?

 1.1.3. Where is CMIS being adopted?

 1.2. Setting up a CMIS test environment

 1.2.1. Requirements

 1.2.2. Installing the OpenCMIS InMemory Repository web application

 1.2.3. Installing the CMIS Workbench

 1.3. Writing your first CMIS code using Groovy

 1.3.1. Connecting to the repository

 1.3.2. Try it—browse the repository using the CMIS Workbench

 1.3.3. Try it—run CMIS code in the CMIS Workbench Groovy console

 1.4. CMIS considerations

 1.4.1. Understanding the limitations of CMIS

 1.4.2. Comparing CMIS to the Java Content Repository (JCR) API

 1.5. Summary

 Chapter 2. Exploring the CMIS domain model

 2.1. The CMIS service

 2.1.1. The role of the CMIS service

 2.1.2. Bindings: what does a CMIS service look like?

 2.2. Repository—the CMIS database

 2.2.1. Repository info and capabilities

 2.2.2. Capabilities across different repository vendors

 2.2.3. Try it—retrieve the repository info

 2.3. Folders

 2.3.1. The role of folders

 2.3.2. Try it—folder navigation

 2.4. Documents

 2.4.1. The role of documents

 2.4.2. Properties

 2.4.3. Try it—list a document’s properties

 2.4.4. Content streams

 2.4.5. Try it—retrieve a document’s content stream

 2.5. The item object type (version 1.1)

 2.6. Summary

 Chapter 3. Creating, updating, and deleting objects with CMIS

 3.1. Creating objects

 3.1.1. Requirements for creating an object

 3.1.2. Try it—create a folder

 3.1.3. Things to think about when creating folders

 3.1.4. Try it—create a document

 3.1.5. Things to think about when creating documents

 3.2. Updating objects

 3.2.1. Try it—rename a document or a folder

 3.2.2. Try it—update the content stream

 3.2.3. Understanding versioning

 3.2.4. Try it—upload a new version of a document

 3.3. Deleting objects

 3.3.1. Requirements for deleting objects

 3.3.2. Try it—delete an object

 3.3.3. Things to think about when deleting objects

 3.4. Summary

 Chapter 4. CMIS metadata: types and properties

 4.1. What is metadata and why do we need it?

 4.2. Metadata in CMIS

 4.2.1. Type definitions are hierarchical and attributes are inherited

 4.2.2. Try it—view the types and property definitions using Workbench

 4.3. Type collections and hierarchies

 4.3.1. Try it—traversing the type hierarchy

 4.3.2. Try it—examining property definitions on types

 4.3.3. Constraints on property definitions

 4.3.4. Try it—examining constraints on property definitions

 4.3.5. Attribute and attribute value inheritance

 4.4. CMIS 1.1 metadata features

 4.4.1. Type mutability

 4.4.2. Secondary types

 4.5. Summary

 Chapter 5. Query

 5.1. Query: a familiar face on search

 5.1.1. Prerequisite for this chapter: SQL basics

 5.1.2. Exercises in this chapter and the InMemory server

 5.2. Introduction to the CMIS Query language

 5.2.1. Reviewing clauses of the SELECT statement

 5.2.2. Checking Query capabilities on a service

 5.2.3. Try it—checking the Query capabilities of a CMIS service

 5.2.4. Try it—your first CMIS Query

 5.2.5. Try it—running a query from code

 5.2.6. Checking query-related attributes for properties

 5.2.7. Search scope

 5.3. Components of a query

 5.3.1. The SELECT clause

 5.3.2. WHERE clause

 5.3.3. Ordering and limiting query results

 5.3.4. Joins and determining repository support

 5.4. CMIS SQL extension functions

 5.4.1. CONTAINS(): full-text search

 5.4.2. Score()

 5.4.3. Navigational functions

 5.5. Summary

 2. Hands-on CMIS client development

 Chapter 6. Meet your new project: The Blend

 6.1. Understanding the business requirements and technical approach

 6.1.1. Business requirements

 6.1.2. Establishing the technical design

 6.2. Walking through the finished product

 6.3. Setting up the development environment

 6.4. Configuring the InMemory server

 6.5. Taking first steps with The Blend

 6.5.1. Setting up the Eclipse project

 6.5.2. Creating a session factory

 6.5.3. Creating the servlets

 6.5.4. Creating the JSPs

 6.5.5. Try it—testing The Blend

 6.6. Summary

 Chapter 7. The Blend: read and query functionality

 7.1. Building a browse page

 7.1.1. Preparing the HTML part of the browse page

 7.1.2. Getting the folder object

 7.1.3. Taking advantage of the OperationContext

 7.1.4. Getting the folder children

 7.1.5. Paging

 7.1.6. Getting the folder parent

 7.1.7. Assembling the browse page

 7.2. Building a document page

 7.2.1. Preparing the HTML part of the document page

 7.2.2. Retrieving documents

 7.2.3. Assembling the document page

 7.2.4. The download servlet

 7.2.5. Adding the version series to the document page

 7.3. Building a query page

 7.3.1. Ways to query: there be three

 7.3.2. Assembling the search page

 7.3.3. Accessing and traversing relationships

 7.4. Summary

 Chapter 8. The Blend: create, update, and delete functionality

 8.1. Creating folders

 8.1.1. Two ways to create folders

 8.1.2. Create folder: doPost()

 8.1.3. Enumerating the creatable folder types

 8.2. Creating documents

 8.2.1. Creating doGet() and doPost() for document creation

 8.2.2. Performing file uploads

 8.3. Updating properties

 8.3.1. Concurrent access and locking

 8.3.2. Properties from CMIS 1.1 secondary types

 8.4. Updating and deleting content

 8.4.1. Deleting content

 8.4.2. Replacing content

 8.4.3. Appending content

 8.5. Versioning

 8.5.1. Creating a new version

 8.5.2. The checkIn() method

 8.6. Copying documents

 8.7. Moving objects

 8.8. Deleting objects

 8.8.1. Deleting documents

 8.8.2. Deleting folders

 8.9. Summary

 Chapter 9. Using other client libraries

 9.1. Working with other client libraries

 9.1.1. Common client libraries

 9.2. Coding in .NET with DotCMIS

 9.2.1. Comparing DotCMIS and OpenCMIS

 9.2.2. Getting started with DotCMIS

 9.2.3. Try it—building a web part with .NET and CMIS to browse The Blend

 9.2.4. Using SharePoint as a CMIS repository

 9.2.5. Connecting to SharePoint

 9.3. Coding in Python with cmislib

 9.3.1. Comparing cmislib and OpenCMIS

 9.3.2. Installing cmislib

 9.3.3. Connecting to a CMIS repository using the interactive shell

 9.3.4. Using cmislib to synchronize objects between two CMIS repositories

 9.4. Apache Chemistry PHP API

 9.4.1. Installing the PHP Client

 9.4.2. About the PHP Client library

 9.4.3. PHP Client architecture

 9.4.4. Differences between OpenCMIS and the PHP Client

 9.4.5. Using PHP to browse The Blend

 9.5. Summary

 Chapter 10. Building mobile apps with CMIS

 10.1. Writing mobile apps with OpenCMIS for Android

 10.1.1. Android and CMIS

 10.1.2. Setting up an Android environment

 10.1.3. Writing your first Android CMIS application

 10.1.4. Try it—writing an Android application for The Blend

 10.2. Writing iOS apps with ObjectiveCMIS

 10.2.1. What is ObjectiveCMIS?

 10.2.2. Comparing ObjectiveCMIS with OpenCMIS

 10.2.3. Getting started with ObjectiveCMIS

 10.2.4. Using ObjectiveCMIS

 10.2.5. Try it—writing an iOS application to capture new tracks for The Blend

 10.3. Summary

 3. Advanced topics

 Chapter 11. CMIS bindings

 11.1. CMIS binding overview

 11.1.1. The RESTful trend

 11.1.2. The need for JavaScript support

 11.1.3. Capturing CMIS traffic for inspection

 11.1.4. Try it—tracing requests from part 1

 11.2. A close look at the three bindings

 11.2.1. The Web Services binding

 11.2.2. The AtomPub binding

 11.2.3. The Browser binding

 11.3. CMIS schemas and schema extensions

 11.3.1. XML schema

 11.4. The OpenCMIS low-level API

 11.4.1. Reasons to use the low-level API

 11.5. Summary

 Chapter 12. Security and control

 12.1. General security considerations

 12.1.1. Cross-site scripting (XSS) attacks

 12.1.2. Cross-site request forgery (CSRF) attacks

 12.2. Authentication

 12.2.1. Cookies

 12.2.2. AuthenticationProvider interface

 12.2.3. Example of an authentication provider

 12.3. Authentication in web applications using the Browser binding

 12.3.1. JavaScript entry points

 12.3.2. Sequence: log in, nextToken, ..., log out

 12.3.3. Example JavaScript

 12.4. Authorization and permissions

 12.4.1. Policies

 12.4.2. ACLs

 12.4.3. Repository-specific permissions

 12.4.4. Changing permissions (applyACL)

 12.5. Retentions and holds

 12.5.1. Repository-managed retentions

 12.5.2. Client-managed retentions

 12.5.3. Holds

 12.6. Summary

 Chapter 13. Performance

 13.1. CMIS performance

 13.2. Selecting the smallest data set

 13.3. Performance notes specific to OpenCMIS and DotCMIS

 13.4. Caching

 13.4.1. Caching static data

 13.4.2. Caching objects

 13.5. Selecting the fastest binding

 13.6. Tuning HTTP for CMIS

 13.6.1. HTTP Keep-Alive

 13.6.2. Compression

 13.6.3. Authentication and cookies

 13.6.4. Timeouts

 13.7. Summary

 Chapter 14. Building a CMIS server

 14.1. Introduction to the OpenCMIS Server Framework

 14.1.1. CmisService interface

 14.1.2. CmisServiceFactory interface

 14.1.3. The framework

 14.2. Generating a server stub

 14.2.1. Building the CMIS server WAR file

 14.2.2. Dissecting the CMIS server WAR file

 14.3. Implementing the CmisServiceFactory interface

 14.3.1. CmisServiceWrapper

 14.3.2. CallContext

 14.3.3. Other CmisServiceFactory methods

 14.4. Implementing the CmisService interface

 14.4.1. AbstractCmisService

 14.4.2. Best practices for implementing the CmisService

 14.5. Testing the CMIS server with the OpenCMIS TCK

 14.5.1. Running the TCK with the CMIS Workbench

 14.5.2. TCK results breakdown

 14.5.3. Deeper testing

 14.6. AtomPub differences

 14.6.1. Providing ObjectInfo

 14.6.2. Handling create and delete requests

 14.6.3. Dealing with version series

 14.6.4. Managing ACLs

 14.7. Parsing a CMIS query

 14.7.1. An example of initialization and use

 14.7.2. Parsing SELECT

 14.7.3. Parsing FROM

 14.7.4. Parsing WHERE

 14.7.5. Parsing ORDER BY

 14.7.6. Query wrap-up

 14.8. Extracting authentication information

 14.8.1. CallContext

 14.8.2. CallContextHandler

 14.8.3. Web services

 14.8.4. Authentication wrap-up

 14.9. CMIS extensions

 14.10. Supporting CMIS 1.0 and CMIS 1.1

 14.11. Summary

 Appendix A. Apache Chemistry OpenCMIS components

 A.1. Apache Chemistry OpenCMIS

 A.1.1. OpenCMIS components overview

 A.1.2. Getting and using OpenCMIS components

 A.1.3. Building OpenCMIS

 A.1.4. Download packages

 A.1.5. Maven modules

 A.1.6. OpenCMIS components for this book

 A.1.7. Using the OpenCMIS client library on an application server

 Appendix B. BNF

 Appendix C. CMIS cheat sheet

 Appendix D. Building web applications with JavaScript

 D.1. JavaScript and CMIS background

 D.1.1. CMIS and web browsers using XML

 D.1.2. Creation of the Browser binding

 D.1.3. OpenCMIS support for the Browser binding today

 D.2. Try it—Hello Browser binding

 D.2.1. First steps

 D.2.2. Your first Browser binding call (getting the repository info)

 D.2.3. Complications: the same origin policy

 D.2.4. Using JSON-P

 D.2.5. Hello JQuery

 D.3. CMIS basic operations with the Browser binding and JQuery

 D.3.1. Enumerating a folder’s children

 D.3.2. Integrating JavaScript components

 D.3.3. Uploading a document

 D.3.4. Query

 Appendix E. References and resources

 E.1. Source code and listings

 E.2. OASIS CMIS references

 E.3. Apache Chemistry–related resources

 E.4. Other libraries used in this book

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 What would the IT industry be without standards? We wouldn’t have compatible databases, communications protocols, print data
 streams, compression and encryption specifications, or the World Wide Web. It’s hard to debate how standards have benefited
 the IT industry, enabling growth, collaboration in solving problems, interoperability across vendors (reducing vendor lock-in)
 and, most importantly, a much wider range of choices for companies. Unfortunately these benefits didn’t apply to the ECM industry
 until recently.

 I first realized the need for a content management standard in 1992. I was involved in developing an application for a large
 corporate client that needed to access content stored in a popular repository. We immediately hit a problem—the content repository
 didn’t have public APIs. In order to get access to the APIs, we had to negotiate a long and complex contract with the repository
 vendor and agree that we wouldn’t use those APIs to migrate content out of the repository. This made no sense to me because
 we were adding significant value to the vendor’s software through this new application. Unfortunately, this type of thinking
 was typical of many content management vendors.

 There have been several attempts at creating Enterprise Content Management standards over the last 15 years. The Open Document
 Management API (ODMA) in the mid-1990s defined an interface between desktop applications and content management systems. In
 1996, work began on the Web Distributed Authoring and Versioning (WebDAV) extensions for HTTP. In the early 2000s, many of
 the key ECM vendors began work on a Java ECM standard called JSR 170. Although the technical contributions to all of these
 standards were excellent, none of them succeeded as a widely supported content management standard.

 There were many reasons these standards didn’t achieve widespread success. Lack of interoperability testing led to incompatible
 implementations, and the lack of commitment by some vendors resulted in limited implementations and few exploiting applications.
 One of the biggest challenges with JSR 170 was the difficulty in supporting it on top of existing repositories that didn’t
 have a hierarchical data model.

 In May 2005, AIIM started a standards group called Interoperable ECM (iECM). This group brought together many vendors and
 users to discuss the critical need to enable better interoperability across ECM vendors and applications. The iECM meetings
 were well attended, and it was clear there was still a strong need for a better ECM standard. In 2006, while attending an
 iECM meeting, I began talking with Cornelia Davis of EMC on jump-starting a new standard. We believed that coming up with
 an initial draft specification targeting key ECM use cases would reduce the amount of time it would take to produce a final
 standard. Ethan Gur-esh from Microsoft joined Cornelia and me, and we created the concept of Content Management Interoperability
 Services (CMIS). Additional people from our companies, including David Choy from EMC and Al Brown from IBM, became key participants.
 It was exciting to see how three major competitors could work together on solving an industry problem.

 As we defined the initial CMIS specification, we knew we had to approach the problem differently than in the past. We had
 three key objectives in defining CMIS: (1) ensure the standard could easily be supported on a wide range of existing content
 repositories; (2) agree on the right level of function so the standard was usable for an initial set of key ECM use cases;
 and (3) define a process to ensure interoperability between vendors.

 Once the initial CMIS draft was complete, we invited Alfresco, Oracle, SAP, and OpenText to participate. Momentum around CMIS
 built, and a lot of technical work was accomplished in a short period of time. We then moved the standard into OASIS, and
 twenty additional companies began actively participating in the CMIS work. In May 2010, CMIS 1.0 became an official OASIS
 standard.

 I’m often asked if CMIS will become a widely used standard for Enterprise Content Management or if it will suffer the same
 fate as the previous attempts. There’s no way to know for sure, but CMIS is seeing tremendous interest and support and has
 very powerful supporters, such as Apache Chemistry, that enable companies to get started quickly. We’re seeing CMIS projects
 in large corporations and application vendors that are very promising.

 There’s little debate that CMIS has the potential to increase the usage of content management systems across all industries
 and applications, dramatically simplifying and standardizing access to unstructured content. IT projects such as a customer
 portal that requires access to multiple content sources can be implemented more quickly with fewer dependencies on proprietary
 client APIs. Small software vendors who want to build cross-vendor industry vertical solutions can now easily do so. As CMIS
 matures, there will be creative new uses that we haven’t yet thought about. It’s exciting to watch the growth and evolution
 of CMIS.

 A lot of people were key to creating CMIS, and I want to personally thank Cornelia Davis, Ethan Gur-esh, John Newton, Al Brown,
 Betsy Fanning, and Paul Fontaine. Without these people, and many others, CMIS would never have become a successful industry
 standard.

 I would also like to thank Jay Brown, Florian Müller, and Jeff Potts for writing this book. CMIS and Apache Chemistry in Action is the most complete, authoritative work on CMIS you will find. It contains a wealth of technical insights as well as practical
 hints and tips. If you want to learn about CMIS, or start building software using CMIS, you will want to read this book.

 RICHARD J. HOWARTH

 DIRECTOR, ECM SOFTWARE DEVELOPMENT

 IBM SOFTWARE GROUP

Foreword

 Content has never been more important. Content drives transactions, websites, and engagement. Content is the container of
 information that makes data consumable, usable, and actionable and has become the lifeblood of many businesses and business
 processes. Financial service, media, government, and high-technology organizations wouldn’t exist without electronic documents
 and other forms of content. Today the Enterprise Content Management industry is worth $5 billion in software alone, according
 to analyst group IDC. Businesses dealing with the overload of information and the need to keep that information timely and
 accurate are willing to pay a lot to get content under control.

 However, in the three decades since the introduction of content management, the number of content systems has proliferated,
 with many similar systems sitting side by side. Internal IT organizations and system integrators are frequently reinventing
 the wheel as the CIO struggles to meet the information needs of the enterprise. Over the last two decades, this has led enterprises
 large and small to spend over $50 billion on software, hardware, and services to deliver content solutions to end users. Solutions
 such as invoice capture, contract management, regulatory submissions, and responsive websites, among many, many other solutions,
 can take months and even years to go into effective production.

 If only we could reuse these solutions on our other content systems! If only we could develop solutions without worrying how
 and where they were going to be deployed. If only applications developers built these solutions as complete solutions that
 could deploy faster and cheaper. If only we could hire the developers trained to build these solutions.

 It says a lot about the content management industry, populated by some of the most competitive firms in enterprise software,
 that those competitors recognized the customer need for these solutions and to make them affordable. The same competitors
 recognized that a content management industry built on standards and interoperability could be even bigger with higher value
 to the customer. That’s why these software companies got together to form CMIS as an open and common way of accessing all
 their systems and to provide a consistent way of developing their applications.

 This was no easy feat. Developing standards is a laborious process and takes a lot of persistence. The content management
 industry had tried several times before, in the previous decade, with little success. In 2008, competitors set their differences
 aside and decided that growing the market for content was more important than expanding their piece of the pie. Beginning
 with EMC, IBM, and Microsoft, then adding Alfresco, OpenText, Oracle, and SAP, and finally opening it to the whole world of
 content through OASIS, these competitors started the collaborative project known as CMIS. Reacting to customer requests to
 provide for interoperability between diverse systems and a desire to build a stronger ecosystem, these companies wanted to
 work together to make a bigger market. The pragmatic approach of the committee, led by Chair David Choy and editors Al Brown,
 Ethan Gur-esh, Ryan McVeigh, and Florian Müller, produced a specification that was implementable on a wide range of systems.

 What was even more remarkable was the way that many of those same companies and individuals came together to jointly develop
 the Apache Chemistry project, an open and standards-based software platform to speed the development of the CMIS standard.
 Florian Müller, in particular, had the vision to have one common code base that would support multiple communication protocols
 and could be used either by the vendors providing a CMIS interface or applications using CMIS to access content repositories.
 Initially, the OpenCMIS group in Apache Chemistry, by sharing the load of developing common software, made sure that everyone
 won—vendors, developers, and users.

 This book illustrates the breadth and possibilities of CMIS, because having open standards and common open source code has
 dramatically cut the time to implementation for both providers and users of CMIS. With the original vision of CMIS not being
 tied to any particular programming language or binding, this book develops example applications using many languages and development
 approaches. It’s a testament not just to the ingenuity of the authors, but also to the dedication of the men and women who
 participated in CMIS and Apache Chemistry.

 I’ve always been a keen optimist about what can be accomplished with CMIS. The timing of the arrival of CMIS and Apache Chemistry
 couldn’t have been better to tackle new applications that are social, mobile, and in the cloud. By considering RESTful interfaces,
 developers can use modern tools to create these applications and have access to some of the most important information in
 an enterprise, whether serving an employee, a customer, or a consumer. CMIS also provides an important bridge of new, productive,
 mobile and social applications to legacy systems of production enterprise systems. Content will be delivered wherever it’s
 needed, whether it’s in a social media conversation, presented on a mobile device, captured in a high-throughput scanner,
 or annotated in a critical process application.

 I hope this book not only educates you on how to develop portable content applications, but inspires you to put content to
 work in new and imaginative ways.

 JOHN NEWTON

 CHAIRMAN AND CTO, ALFRESCO

 CHAIRMAN, AIIM

Preface

 It was early 2012 (Q1), long past the OASIS approval of CMIS 1.0 as a standard. Due to my work on the OASIS CMIS Technical
 Committee (TC) since 2008, I had become a sort of hub for CMIS support within IBM, but over the last year this role had begun
 to snowball. By looking at my inbox each morning, it was quickly becoming clear to me that answering internal and customer
 CMIS questions could end up being a full-time job if the volume increase continued. I figured this must also be the case for
 many of my TC colleagues.

 It should have been obvious to me before then, but it wasn’t. Not until a few customers and other IBMers had asked, “When
 will there be a book about CMIS?” did I realize the time had come. I needed to talk to Florian about getting a lineup of authors
 together to approach this subject. One thing I knew for sure is that his participation would be critical. Probably a third
 of the internal support questions I received about Apache Chemistry had to be deferred to him already. Hands down, nobody
 knew as much about OpenCMIS as he did, and he was turning out to be a very important library to IBM and our customers.

 Florian and I had a few meetings about this, and we decided that it would be nice to have two more authors to help shoulder
 the load, because this book would have to cover a lot of ground (we were guessing more than 500 pages), and we both had day
 jobs.

 First on our wish list was Jeff Potts. Not only was Jeff the author of cmislib, which eventually became the Python library
 part of Apache Chemistry, but he was already an experienced technical author. (He had single-handedly written the very successful
 Alfresco Developer Guide in 2008.) The combination of CMIS expertise with that level of technical writing prowess meant he
 was a must for this writing team.

 Luckily for us, both Florian and I had worked with Jeff in the past—Florian in his former role at Alfresco, and myself when
 Jeff and I coauthored a developerWorks article about cmislib in March 2010. Even more fortunate, Jeff agreed to join us. But
 there were still some gaps to be filled. So far we had IBM, Alfresco, Apache Chemistry, and SAP on board, but that still left
 us with a conspicuous gap in our lineup: Microsoft...

 A month later, we had begun courting publishers and had something tentative going with Manning, but our roster was still not
 complete. SharePoint is a subject that we didn’t want to gloss over, and we still didn’t have anyone on board with a SharePoint
 CMIS background. To make a long story short, through a contact at the TC (Adam Harmetz), we ended up getting one of the engineers
 who was working on the CMIS implementation for SharePoint 13 (Matt Mooty) to commit to writing the chapter that would eventually
 cover not only SharePoint but .NET as well.

 Of course, we still had a long list of areas we wanted to cover where we were going to need some more outside help. That’s
 where Jens, Jean-Marie, Richard, Gi, Jane, and Dave came in to save us (see the acknowledgments for details and special thanks
 to these very important contributors).

 And now here we are, over a year later. We hope that this book will stand as the authoritative CMIS reference for years to
 come. This was a primary goal early on, and the reason we’ve taken on a lot of extra work to cover the new 1.1 spec, even
 though the ink has barely dried. In fact, as I type this, the public review has just completed and Oasis has made version
 1.1 official.

 I know its cliché, but I’ll say it anyway. This has been more work than we ever thought, going into the project, but now that
 it’s almost done I know we’re all glad we did it and we’re extremely proud of the end result. We hope that you enjoy it and,
 more importantly, that it helps you succeed in whatever project you’re undertaking with CMIS.

 JAY BROWN

Acknowledgments

 Apart from the efforts of the authors, the success of this book has depended on many other people who have made this possible.

 First, thanks go to the OASIS TC, without whom there would be no CMIS in the first place. Writing about the protocol is certainly
 hard, but writing the protocol in the first place is much harder!

 Second, we thank all the individuals who gave us support in the form of content based on their specific areas of expertise,
 as well as the staff at Manning Publications, who guided and encouraged us every step of the way through the publication process.

 We thank the many reviewers of the book who helped us with their feedback through numerous readings of the manuscript during
 development: Andreas Krieg, Andrei Bautu, Bashar Nabi, Blake Girardot, Dave Brosius, Dirk Jablonski, George Gaines, Gregor
 Zurowski, John W. Reeder, Jose Rodriguez, Martin Hermes, Musannif Zahir, Nadia Noori, Robert Casazza, Ryan McVeigh, Sebastian
 Danninger, and Stephen Rice.

 Special thanks go to David Caruana who, in his role as technical proofreader, took on the enormous task of going though every
 page of the book and verifying each of the code examples for all of the subject areas and programming languages.

 We are grateful to Richard J. Howarth at IBM and John Newton at Alfresco and AIIM for generously contributing the forewords
 to the book and for endorsing our work.

 We’d also like to acknowledge Jane Doong (Software Engineer, Enterprise Content Management, IBM) for her significant contribution
 of technical material for chapter 5 (“Query”) and her role in helping make sure that the information on CMIS Query that we presented was not only current but
 complete and authoritative.

 We were fortunate enough to have Matt Mooty (Software Development Engineer, Microsoft) at our disposal for the DotCMIS section
 in chapter 9. And, later in that chapter, Richard McKnight (Principal Technical Consultant, Alfresco) pitched in with the PHP section.
 We’re grateful these guys were able to give their time to the project.

 Chapter 10, which covers developing mobile applications with CMIS, wouldn’t have been possible without Jean-Marie Pascal (Mobile Engineer,
 Alfresco), who contributed the Android section, and Gi Lee (Technical Architect, Zia Consulting) who contributed the iOS section.
 Thanks to you and your respective teams and companies for the great content.

 Also, many thanks to Jens Hübel (Software Architect, SAP AG), whose contribution of the OpenCMIS Server (among many other
 things, including all the content from our JavaScript development appendix) made it possible for us to include our own server
 with this book.

 Thanks to Dave Sanders (Senior Developer, Enterprise Content Management, IBM) who tested and converted all The Blend metadata
 into FileNet’s XML metadata import format. Now readers who want to run the part 2 examples on a test FileNet server can do so just by importing the data we’ve included with the book.

 Thanks to all of you, and to the many others who provided support, both technical and otherwise, and who would be too numerous
 to list here. We’d also like to thank our families and friends, who showed patience and understanding when we had to stay
 glued to our laptops for the many nights and weekends it took to complete this project.

About this Book

 The OASIS CMIS (Content Management Interoperability Services) standard is the lingua franca of Enterprise Content Management
 (ECM) systems. This book is a comprehensive guide to the CMIS standard and related ECM concepts.

 The focus of this book is on hands-on experience with the standard and with the Apache Chemistry libraries and tools. We start
 with providing the basics for developers, but these early chapters will also be beneficial for nondevelopers who want to understand
 the standard. As you get deeper into the book, by the end of part 2, you should be able to build an application that connects to any content repository that supports CMIS. We provide practical
 code examples for Java, Groovy, Python, C#, Objective-C, PHP, and JavaScript. And in the final chapters, we cover expert topics
 like optimizing your CMIS application and building your own CMIS server.

Audience

 This book was written primarily for software developers and architects who design and build content-centric applications.
 You don’t have to be an ECM expert to follow along, but some familiarity with content management systems is assumed. Basic
 programming skills will be useful for the first part of this book. Parts 2 and 3 require knowledge of a standard programming language like Java or C#, but no previous CMIS expertise or knowledge of the
 Apache Chemistry libraries are required.

Roadmap

 This book is divided into three parts, each with a different target audience with respect to experience level.

 Part 1 (chapters 1–5) is for newcomers to ECM and CMIS. The examples in this section are very simple and cover a broad spectrum of CMIS operations
 at a basic level.

 Part 2 (chapters 6–10) is for a more intermediate audience, who at a minimum are comfortable with the CMIS basics covered in part 1 and have a bit more application development background. Part 2 is where you’ll build a functioning content-centric application with CMIS. You’ll notice a distinct increase in pace when
 you get into part 2, especially by the time you get to chapter 7.

 Part 3 (chapters 11–14), as well as some of the appendix material, is for an advanced audience, with some of the material aimed at lead developers
 or architects. This part covers low-level details around the CMIS bindings, security, and performance, and also covers how
 to implement your own CMIS-compliant server.

Code conventions and downloads

 All source code in listings or in text is in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 You can download the source code for all listings from the Manning website, www.manning.com/CMISandApacheChemistryinAction.

Author Online

 The purchase of CMIS and Apache Chemistry in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/CMISandApacheChemistryinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 JAY BROWN

 A software developer for over 25 years, Jay has been building ECM products for IBM and FileNet since 1999. These include the
 design and construction of the Java and .NET APIs for FileNet Content Manager.

 Jay started working with CMIS in 2008 when he joined the OASIS TC (Technical Committee) and designed IBM’s first CMIS implementation
 for FileNet, followed by a list of other ECM CMIS projects. He was one of the original contributors for CMIS 1.0 in addition
 to having authored several of the new CMIS 1.1 specification features.

 As the CMIS Evangelist for IBM, he works with other development projects inside and outside of the company, helping teams
 implement the standard while ensuring interoperability with the ever-growing CMIS ecosystem.

 Jay lives in Los Angeles, California, with his wife Cindy.

 FLORIAN MÜLLER

 Florian has been developing enterprise software since the late 1990s. His focus on document management systems began when
 he joined OpenText in 2002. A few years later he moved to Alfresco and is now working as an ECM Development Architect at SAP.

 In 2008, Florian joined the OASIS CMIS TC (Technical Committee) and became one of the specification editors for CMIS 1.0 and
 later for CMIS 1.1. A year later he joined the incubator project Apache Chemistry and became the project chair in 2011 when
 Apache Chemistry turned into an Apache top-level project. He is one of the core developers of the Apache Chemistry subprojects
 OpenCMIS (Java) and DotCMIS (.NET).

 Florian lives near Heidelberg in Germany.

 JEFF POTTS

 Jeff has been working with unstructured data and document-oriented data stores for most of his 20-year career, starting with
 Lotus Notes in the early 1990s, then Web Content Management and Document Management platforms like Interwoven and Documentum,
 until diving into the world of open source full-time in 2006. After 5 years implementing open source software for clients
 and playing a big part in the Alfresco community, Jeff joined Alfresco as their Chief Community Officer in 2011, where he’s
 responsible for growing the Alfresco community through product evangelism and developer outreach.

 Jeff starting working with CMIS in 2008 when he created a proof-of-concept to integrate Drupal and Alfresco via CMIS, which
 eventually grew into the Drupal CMIS API module. Then, in 2009, he created cmislib, the Python API for CMIS, which later joined
 Apache Chemistry as the first non-Java contribution to the project. Since then, Jeff has continued to maintain cmislib and
 to review and comment on the CMIS specification as it continues to evolve.

 Jeff lives in Dallas, Texas, with his wife, Christy, and their two children, Justin and Caroline.

About the Cover Illustration

 The figure on the cover of CMIS and Apache Chemistry in Action is captioned “Le Gamin de Paris,” which means a street urchin in Paris. The illustration is taken from a nineteenth-century
 edition of Sylvain Maréchal’s four-volume compendium of regional dress customs published in France. Each illustration is finely
 drawn and colored by hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s
 towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. Whether
 on city streets, in small towns, or in the countryside, it was easy to identify where they lived and what their trade or station
 in life was just by their dress.

 Dress codes have changed since then and the diversity by region and class, so rich at the time, has faded away. It is now
 hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural
 diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Understanding CMIS

 This part of the book is a gentle introduction to the Content Management Interoperability Services (CMIS) standard, as well
 as the tools and concepts you need to know to work with CMIS-compliant repositories. Chapter 1 shows you how to perform the most basic interactions possible. Chapter 2 covers the basic building blocks of a CMIS repository: folders and documents. As the chapters progress, you’ll learn more
 and more about CMIS concepts, such as versioning (in chapter 3), types (in chapter 4), and queries (in chapter 5). By the end of this part of the book, you’ll be ready to write your own CMIS client.

Chapter 1. Introducing CMIS

 This chapter covers

 	Presenting the CMIS standard

 	Setting up your development environment

 	Taking your first CMIS steps using Groovy and the CMIS Workbench

 	Understanding possible limitations before using CMIS for your project

 This chapter introduces the Content Management Interoperability Services (CMIS) standard. After running through a high-level
 overview of the standard and learning why it’s important, you’ll work on a simple hands-on example. By the end of the chapter,
 you’ll have a reference server implementation running on your local machine and you’ll know how to use Groovy to work with
 objects stored in a CMIS server by using a handy tool from Apache Chemistry called CMIS Workbench.

1.1. What is CMIS?

 We’re willing to bet that at some point in your career you’ve written more than a few applications that used a relational
 database for data persistence. And we’ll further wager that if any of those were written after, say, 1992, you probably weren’t
 too concerned with which relational database your application was using. Sure, you might have a preference, and the company using your application might have a standard database, but unless you were doing
 something out of the ordinary, it didn’t matter much.

 This database agnosticism on the part of developers is only possible because of the standardization of SQL. Before that happened,
 applications were written for a specific relational back end. Switching databases meant porting the code, which, at best,
 was a costly exercise and, at worst, might be completely impractical. Before standardization, developers had to write applications
 for a specific database, as shown in figure 1.1.

 Figure 1.1. Before SQL standardization, developers wrote applications against specific databases.

 [image:]

 This notion of writing applications that only work with a particular database seems odd to modern-day developers who are used
 to tools like ODBC and JDBC that can abstract away the details of a particular database implementation. But that’s the way
 it was. And that’s the way it still is for many developers working in the world of content management.

 Until recently, developers writing applications that needed to use Enterprise Content Management (ECM) systems for data persistence
 faced the same challenge as those pre-SQL-standardization folks: Each ECM system had its own API. A software vendor with expertise
 in accounts payable systems, for example, and a team of .NET developers were locked into a Microsoft-based repository. If
 a customer came along who loved the vendor’s solution but didn’t want to run Microsoft, they had a tough choice to make.

 That’s where CMIS comes in.

 CMIS is a vendor-neutral, language-independent specification for working with ECM systems (sometimes called rich content repositories or more loosely, unstructured repositories). If you’re new to the term repository (or repo, for short), think of it as a place where data—mostly files, in this case—lives, like a file cabinet.

 With CMIS, developers can create solutions that will work with multiple repositories, as shown in figure 1.2. And customers can have less vendor lock-in and lower switching costs.

 Figure 1.2. CMIS standardizes the way applications work with rich content repositories in much the same way SQL did for relational databases.

 [image:]

 The creation of the CMIS specification and its broad adoption is almost as significant and game-changing to the content management
 industry as SQL standardization and the adoption of that standard was to the relational database world. When enterprises choose
 repositories that are CMIS-compliant, they reap the following benefits.

 Content-centric applications, either custom built or bought off the shelf, are more independent of the underlying repository
 because they can access repositories in a standard way instead of through proprietary APIs. This reduces development costs
 and lowers switching costs.

 Developers can ramp up quickly because they don’t have to learn a new API every time they encounter a new type of repository.
 Once developers learn CMIS, they know how to perform most of the fundamental operations they’ll need for a significant number
 of industry-leading, CMIS-compliant repositories.

 Because CMIS is language-neutral, developers aren’t stuck with a particular platform, language, or framework driven by the
 repository they happen to be using. Instead, developers have the freedom to choose what makes the most sense for their particular
 set of constraints.

 Enterprise applications can be more easily and cheaply integrated with content repositories. Rather than developing expensive,
 one-off integrations, many enterprise applications have CMIS connectors that allow them to store files in any CMIS-compliant repository.

 OK, you’re convinced. CMIS is kind of a big deal in the Enterprise Content Management world. Let’s talk a little bit about
 how the CMIS specification is defined, look at an example of what you could use CMIS to do, and see a list of places where
 CMIS exists in the wild.

 1.1.1. About the specification

 CMIS is a standard, and the explanation of the standard is called a specification. The CMIS specification describes the data model, services, and bindings (how a specific wire protocol is hooked up to the
 services) that all CMIS-compliant servers must support. You’ll become intimately familiar with the data model, services, and
 bindings as you work through the rest of this book.

 The CMIS specification is maintained using a collaborative, open process managed by the Organization for the Advancement of
 Structured Information Standards (OASIS). According to its website (www.oasis-open.org), “OASIS is a non-profit consortium that drives the development, convergence, and adoption of open standards for the global
 information society.” Using an organization like OASIS to manage the CMIS specification ensures that anyone who’s interested
 can get involved in the specification, either as an observer or as an active voting member.

 The group of people who work on the specification is called the Technical Committee or TC, for short. What’s great is that the CMIS TC isn’t made up of only one or two companies or individuals but is composed of
 more than 100 people from a wide range of backgrounds and industries, including representation from the who’s who of content
 management vendors, large and small.

 1.1.2. What does CMIS do?

 OK, so CMIS is an open standard for working with content repositories. But what does it do? Well, the standard doesn’t do
 anything. To make it interesting, you need an implementation. More specifically, you need a CMIS-compliant server. When a
 content repository is CMIS-compliant, that means that it provides a set of standard services for working with the objects
 in that repository. You’ll explore each of those services in the coming chapters, but the set includes things like creating
 documents and folders, searching for objects using queries, navigating a repository, setting permissions, and creating new
 versions of documents.

 Let’s discuss a real-world example. Suppose you work for a company whose content lives in three different repositories: SharePoint,
 FileNet, and Alfresco. The sales team comes to you and asks for a system that will build PowerPoint presentations on the fly
 by pulling data from each of these repositories. The PowerPoint presentations need to be based on a template that resides
 in SharePoint and will include, among other things, images of the last three invoices. The invoice images reside in FileNet.
 The final PowerPoint file is stored in Alfresco and accessed by the sales team using their tablets. A high-level overview
 of this application is shown in figure 1.3.

 Figure 1.3. Most companies store content in multiple ECM repositories. Content-centric applications either have to use multiple disparate
 APIs, or take advantage of CMIS’s ability to use each repository in a standard way.

 [image:]

 Before CMIS, your system would have to use at least three different APIs to make this happen. With CMIS, your system can use
 a single API to talk to each of the three repositories, including the mobile application.

 	

 Three different ECM systems in the same organization?

 You may be wondering how real-world this example is—three ECM systems in the same organization? In fact, it happens quite
 often. According to AIIM, the Association for Information and Image Management, which is a major ECM industry organization,
 “72% of larger organizations have three or more ECM, Document Management, or Records Management systems” and “25% have five
 or more” (“State of the ECM Industry,” AIIM, 2011).

 How does a company find itself in this situation? It happens for many reasons. Sometimes these systems start out as departmental
 solutions. In large organizations where there may not be an enterprise-wide ECM strategy, multiple departments may—knowingly
 or unknowingly—implement different systems because they feel their requirements are unique, they have timelines that don’t
 allow for coordination with other departments, or any number of other reasons.

 Similarly, companies often bring in multiple systems because they may fill niche requirements (like digital asset management
 or records management) and one vendor may be perceived as offering a better fit for those highly specific requirements. But
 ECM vendors, particularly large ones, often use their niche solution as a foot in the door—it’s a common strategy for ECM
 vendors with “suites” of products to subsequently expand their footprint from their original niche solution to other product
 offerings.

 As each department or niche implementation sees success, the rollouts broaden until what once were small, self-contained solutions
 may grow to house critical content for entire divisions. Once each ECM system has gotten so big, the business owners are reluctant
 to consolidate because the risk may not justify the benefit. After all, the business owners are happy—their requirements are
 being met.

 As a result, it’s common to walk into a company with many different ECM systems. If this is a problem you deal with, we hope
 the techniques you learn in this book will save you time, money, and frustration.

 	

 1.1.3. Where is CMIS being adopted?

 Standards that no one implements aren’t useful. So far, CMIS has avoided this fate. Thanks to the early involvement of a number
 of large ECM vendors in developing the specification, and the specification’s language neutrality, CMIS enjoys broad adoption.
 If you’re currently using an ECM repository that’s updated to a fairly recent version, it’s likely to be CMIS-compliant. Table 1.1 shows a list of common ECM vendors or open source projects and when they started to support CMIS. This list is only a subset
 of the CMIS-compliant servers available at the time of this writing. The CMIS page on Wikipedia (http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services) contains a more exhaustive list. If you don’t see your favorite content server in the list, ask your vendor.

 Table 1.1. Selection of ECM vendors, or open source projects, and their support for CMIS

 	
 Vendor

 	
 Product

 	
 Release that first provided CMIS 1.0 support

 	Alfresco Software
 	Alfresco
 	3.3

 	Alfresco Software
 	Alfresco Cloud
 	March 2012

 	Apache Chemistry
 	InMemory Repository
 	0.1

 	Apache Chemistry
 	FileShare Repository
 	0.1

 	EMC
 	Documentum
 	6.7

 	HP Autonomy Interwoven
 	Worksite
 	8.5

 	IBM
 	FileNet Content Manager
 	5.0

 	IBM
 	Content Manager
 	8.4.3

 	IBM
 	Content Manager On Demand
 	9.0

 	KnowledgeTree
 	KnowledgeTree
 	3.7

 	Magnolia
 	CMS
 	4.5

 	Microsoft
 	SharePoint Server
 	2010

 	Nuxeo
 	Platform
 	5.5

 	OpenText
 	OpenText ECM
 	ECM Suite 2010

 	SAP
 	SAP NetWeaver Cloud Document Service
 	July 2012

 As the previous table illustrates, a variety of CMIS-compliant servers are available. CMIS gives you a single API that will
 work across all of these servers.

1.2. Setting up a CMIS test environment

 Alright, time to roll up your sleeves and set up a working CMIS development environment that you can take advantage of as
 you work through the rest of this book.

 We’ll give you a proper introduction to Apache Chemistry in part 2 of the book. For now, it’s important to know that Apache Chemistry is a project at the Apache Software Foundation that groups
 together a number of CMIS-related subprojects, including client libraries, server frameworks, and development tools. It’s
 the de facto standard reference implementation of the CMIS specification. One of the Apache Chemistry subprojects is called
 OpenCMIS, and it’s made up of multiple components. For the rest of this chapter, you’ll use two of those components: the OpenCMIS
 InMemory Repository and the CMIS Workbench.

 The OpenCMIS InMemory Repository, as the name suggests, is a CMIS-compliant repository that runs entirely in memory. It’s
 limited in what it can do, but it’ll serve our needs quite nicely.

 The CMIS Workbench is a Java Swing application that we’ll use as a CMIS client to work with objects in the CMIS server. The
 CMIS Workbench was created using the OpenCMIS API and is typically used by developers who want a view into a CMIS repository
 that is based purely on the CMIS specification. For example, suppose you’re working with Microsoft SharePoint, which has a
 variety of ways to create, query, update, and delete content that resides within it, and you want to integrate your application
 with SharePoint using CMIS. You could use the CMIS Workbench to test some queries or inspect the data model. If you want to
 know if you can do something purely through CMIS, one test is to try to do it through the CMIS Workbench. If the CMIS Workbench
 can do it, you know you’ll be able to do it as part of your integration.

 One of the key features of the CMIS Workbench, from both a “developer utility” perspective and a “let’s learn about CMIS”
 perspective, is its interactive Groovy console. The Groovy console is perfect for taking your first steps with CMIS.

 When you’re finished setting up your environment, it’ll look like figure 1.4.

 Figure 1.4. Your local CMIS development setup includes two components: the CMIS Workbench and the OpenCMIS InMemory Repository. This is
 all you’ll need for the examples in part 1 of this book.

 [image:]

 We’ve made it easy to set up your local CMIS development environment. Everything you need is in the zip file that accompanies
 this book (see appendix E for links to resources). Let’s unzip the components you’ll need for the rest of part 1.

 	

 Downloading and building your own CMIS tools

 To save you time and make the setup easier, we’ve taken distributions from the Apache Chemistry project and packaged them
 together with some sample configuration and data that will be used throughout the book. When you’re ready to learn how to
 download out-of-the-box versions of these components, or you want to know how to build them from source, or you want to get
 the latest and greatest release of OpenCMIS, refer to appendix A.

 	

 1.2.1. Requirements

 For the rest of part 1, all you need is the CMIS Workbench and the OpenCMIS InMemory Repository. These components both need a JDK (version 1.6 or
 higher will do). Other than that, everything you need is in the zip.

 Before continuing, find a place to unzip the archive that accompanies this book. We’ll call it $BOOK_HOME. Within $BOOK_HOME,
 create two directories: server and workbench.

 1.2.2. Installing the OpenCMIS InMemory Repository web application

 Let’s install and start up the OpenCMIS InMemory Repository:

 1. Change into the $BOOK_HOME/server directory and unzip inmemory-cmis-server-pack.zip into the directory.

 2. Run ./run.sh or run.bat, depending on your platform of choice.

 This will start up InMemory Repository on your machine, and it will listen for connections on port 8081. If you’re already
 running something on port 8081, edit run.sh (or run.bat) and change the port number. All of the directions in the book will
 assume the InMemory repository is running on port 8081.

 After the server starts up, you should be able to point your browser to http://localhost:8081/inmemory and see something that
 looks like figure 1.5.

 Figure 1.5. Apache Chemistry OpenCMIS InMemory Repository welcome page

 [image:]

 Now you have a working CMIS server running on your machine. The CMIS server has some test data in it, but in order to work
 with it, you need a CMIS client. In part 1, you’ll use a CMIS client that’s already been built. It’s a Java Swing desktop application called CMIS Workbench. Setting
 it up is the subject of the next section.

 1.2.3. Installing the CMIS Workbench

 The CMIS Workbench is distributed as a standalone Java Swing application. Everything you need to run it is in the package
 included with the book. To install it, follow these steps:

 1. Open a new window and switch to the $BOOK_HOME/workbench directory.

 2. Unzip cmis-workbench.zip into the directory.

 3. Run the appropriate batch file for your operating system. For example, on Windows, run workbench.bat. On Mac and Unix/Linux systems, run workbench.sh.

 The Workbench will start up, and you should see an empty login dialog box, like the one in shown in figure 1.6.

 Figure 1.6. An empty CMIS Workbench login dialog box

 [image:]

 Congratulations! You now have everything you need to explore a working CMIS implementation.

1.3. Writing your first CMIS code using Groovy

 Your OpenCMIS InMemory Repository is running, and so is the first CMIS client you’ll be working with, the CMIS Workbench.
 It’s time to get the two to work together.

 1.3.1. Connecting to the repository

 To talk to the OpenCMIS InMemory Repository, you need to choose a binding and you need to know the server’s service URL, which depends on the binding you choose, as you can see in figure 1.7.

 Figure 1.7. To connect to the repository, you must select a binding and specify the service URL.

 [image:]

 The binding is the method the CMIS client will use to talk to the server. You can also think of it as the protocol it’ll use
 to communicate. In CMIS version 1.0, the two choices for binding are Atom Publishing Protocol (AtomPub) and Web Services.
 CMIS version 1.1 adds a third binding called the Browser binding. We’ll go through the binding details in chapter 11. For now, we’ll use the AtomPub binding.

 The service URL is the entry point into the server. The CMIS client will learn all it needs to know about the server it’s
 talking to by invoking the service URL and inspecting the response it gets back. The service URL depends on the server you’re
 using, the binding you’ve chosen, and how the server is deployed. In this case, the server is deployed to a web application
 under the inmemory context, so the URL will begin with http://localhost:8081/inmemory; and the AtomPub service URL is /atom,
 so the full service URL is http://localhost:8081/inmemory/atom.

 	

 The CMIS Workbench can connect to any CMIS server

 We’re using the Apache Chemistry InMemory Repository throughout this book because it’s freely available, easy to install,
 and compliant with the CMIS specification. But, as the name implies, it stores all of its data in memory. That would never
 work for most production scenarios. Real ECM repositories persist their data to a more durable and scalable back end. Typically
 this is some combination of a relational database and a filesystem. If you have access to an ECM repository like Alfresco,
 FileNet, SharePoint, or the like, you can use the CMIS Workbench to work with data stored in those repositories. All you need
 to know is your repository’s service URL.

 	

 1.3.2. Try it—browse the repository using the CMIS Workbench

 You now know enough to be able to connect to the server. Follow these steps to use the CMIS Workbench to connect to the server
 and browse the repository:

 1. If the CMIS Workbench isn’t running, run it as previously discussed.

 2. If the CMIS Workbench isn’t displaying the login dialog box, click Connection in the upper-left corner.

 3. Specify http://localhost:8081/inmemory/atom as the URL.

 4. Take all the other defaults. Click Load Repositories.

 5. The InMemory Repository only has one repository. You should see it in the Repositories list. Click Login.

 If everything is working correctly, you should see the login dialog box close and the Workbench will display the contents
 of the repository, as shown in figure 1.8.

 Figure 1.8. Root folder of the OpenCMIS InMemory Repository

 [image:]

 Take a few minutes to explore the Workbench. You can’t hurt anything. Every time you restart the InMemory Repository, it’ll
 revert to its original state.

 Here are a few things to notice as you explore:

 	As you click objects in the left-hand pane, the right-hand pane updates to provide details on what’s selected.

 	The right-hand pane has tabs across the top that group different sets of information about the selected object as well as
 actions you can take on the selected object.

 	The items in the menu bar let you do things like change the connection details, inspect repository information, view the types
 defined on the server, and open a Groovy console. That’s where we’re headed next.

 1.3.3. Try it—run CMIS code in the CMIS Workbench Groovy console

 Groovy is a dynamic language that’s easy for Java programmers to learn. It can run anywhere Java can run. It’s different from
 Java in a few respects, such as the fact that semicolons are optional in most cases, closures are supported, and regular expressions
 are natively supported.

 	

 Don’t know Groovy? No problem!

 Don’t worry if you don’t know Groovy. We picked it for the examples in part 1 of this book because it’s easy to learn, it looks similar to Java, it doesn’t require a compiler, and the CMIS Workbench
 features a Groovy console. You’ll probably easily grok what’s going on as you work through the examples. But if you want to
 dive into Groovy, you can learn more from the Groovy home page (http://groovy.codehaus.org/) or from Groovy in Action, Second Edition (Manning, 2013).

 	

 The best way to get a feel for Groovy is to jump right in, so let’s do that. Follow these steps to write a Groovy script that
 will display the repository’s name:

