

 inside front cover

 [image:]

 [image:]

 Effective Data Science Infrastructure

 How to make data scientists productive

 Ville Tuulos

 Foreword by Travis Oliphant

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Doug Rudder

 	
 Technical development editor:

 	
 Nick Watts

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Al Krinker

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299193

 contents

 front matter

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Introducing data science infrastructure

 1.1 Why data science infrastructure?

 The life cycle of a data science project

 1.2 What is data science infrastructure?

 The infrastructure stack for data science

 Supporting the full life cycle of a data science project

 One size doesn’t fit all

 1.3 Why good infrastructure matters

 Managing complexity

 Leveraging existing platforms

 1.4 Human-centric infrastructure

 Freedom and responsibility

 Data scientist autonomy

 2 The toolchain of data science

 2.1 Setting up a development environment

 Cloud account

 Data science workstation

 Notebooks

 Putting everything together

 2.2 Introducing workflows

 The basics of workflows

 Executing workflows

 The world of workflow frameworks

 3 Introducing Metaflow

 3.1 The basics of Metaflow

 Installing Metaflow

 Writing a basic workflow

 Managing data flow in workflows

 Parameters

 3.2 Branching and merging

 Valid DAG structures

 Static branches

 Dynamic branches

 Controlling concurrency

 3.3 Metaflow in Action

 Starting a new project

 Accessing results with the Client API

 Debugging failures

 Finishing touches

 4 Scaling with the compute layer

 4.1 What is scalability?

 Scalability across the stack

 Culture of experimentation

 4.2 The compute layer

 Batch processing with containers

 Examples of compute layers

 4.3 The compute layer in Metaflow

 Configuring AWS Batch for Metaflow

 @batch and @resources decorators

 4.4 Handling failures

 Recovering from transient errors with @retry

 Killing zombies with @timeout

 The decorator of last resort: @catch

 5 Practicing scalability and performance

 5.1 Starting simple: Vertical scalability

 Example: Clustering Yelp reviews

 Practicing vertical scalability

 Why vertical scalability?

 5.2 Practicing horizontal scalability

 Why horizontal scalability?

 Example: Hyperparameter search

 5.3 Practicing performance optimization

 Example: Computing a co-occurrence matrix

 Recipe for fast-enough workflows

 6 Going to production

 6.1 Stable workflow scheduling

 Centralized metadata

 Using AWS Step Functions with Metaflow

 Scheduling runs with @schedule

 6.2 Stable execution environments

 How Metaflow packages flows

 Why dependency managements matters

 Using the @conda decorator

 6.3 Stable operations

 Namespaces during prototyping

 Production namespaces

 Parallel deployments with @project

 7 Processing data

 7.1 Foundations of fast data

 Loading data from S3

 Working with tabular data

 The in-memory data stack

 7.2 Interfacing with data infrastructure

 Modern data infrastructure

 Preparing datasets in SQL

 Distributed data processing

 7.3 From data to features

 Distinguishing facts and features

 Encoding features

 8 Using and operating models

 8.1 Producing predictions

 Batch, streaming, and real-time predictions

 Example: Recommendation system

 Batch predictions

 Real-time predictions

 9 Machine learning with the full stack

 9.1 Pluggable feature encoders and models

 Developing a framework for pluggable components

 Executing feature encoders

 Benchmarking models

 9.2 Deep regression model

 Encoding input tensors

 Defining a deep regression model

 Training a deep regression model

 9.3 Summarizing lessons learned

 appendix Installing Conda

 index

front matter

foreword

 I first met the author, Ville Tuulos, in 2012 when I was trying to understand the hype around Hadoop. At the time, Ville was working on Disco, an Erlang-based solution to map-reduce that made it easy to interact with Python. Peter Wang and I had just started Continuum Analytics Inc., and Ville’s work was a big part of the motivation for releasing Anaconda, our distribution of Python for Big Data.

 As a founder of NumPy and Anaconda, I’ve watched with interest as the explosion of ML Ops tools emerged over the past six to seven years in response to the incredible opportunities that machine learning presents. There are an incredible variety of choices and many marketing dollars are spent to convince you to choose one tool over another. My teams at Quansight and OpenTeams are constantly evaluating new tools and approaches to recommend to our customers.

 It is comforting to have trusted people like Ville and the teams at Netflix and outerbounds.co that created and maintain Metaflow. I am excited by this book because it covers Metaflow in some detail and provides an excellent overview of why data infrastructure and machine learning operations are so important in a data-enriched world. Whatever MLOps framework you use, I’m confident you will learn how to make your machine learning operations more efficient and productive by reading and referring to this book.

 —Travis Oliphant author of NumPy, founder of Anaconda, PyData, and NumFocus

preface

 As a teenager, I was deeply intrigued by artificial intelligence. I trained my first artificial neural network at 13. I hacked simple training algorithms in C and C++ from scratch, which was the only way to explore the field in the 1990s. I went on to study computer science, mathematics, and psychology to better understand the underpinnings of this sprawling topic. Often, the way machine learning (the term data science didn’t exist yet) was applied seemed more like alchemy than real science or principled engineering.

 My journey took me from academia to large companies and startups, where I kept building systems to support machine learning. I was heavily influenced by open source projects like Linux and the then-nascent Python data ecosystem, which provided packages like NumPy that made it massively easier to build high-performance code compared to C or C++. Besides the technical merits of open source, I observed how incredibly innovative, vibrant, and welcoming communities formed around these projects.

 When I joined Netflix in 2017 with a mandate to build new machine learning infrastructure from scratch, I had three tenets in mind. First, we needed a principled understanding of the full stack—data science and machine learning needed to become a real engineering discipline, not alchemy. Second, I was convinced that Python was the right foundation for the new platform, both technically as well as due to its massive, inclusive community. Third, ultimately data science and machine learning are tools to be used by human beings. The sole purpose of a tool is to make its users more effective and, in success, provide a delightful user experience.

 Tools are shaped by the culture that creates them. Netflix’s culture was highly influential in shaping Metaflow, an open source tool that I started, which has since become a vibrant open source project. The evolutionary pressure at Netflix made sure that Metaflow, and our understanding of the full stack of data science, was grounded on the pragmatic needs of practicing data scientists.

 Netflix grants a high degree of autonomy to its data scientists, who are typically not software engineers by training. This forced us to think carefully about all challenges, small and large, that data scientists face as they develop projects and eventually deploy them to production. Our understanding of the stack was also deeply influenced by top-notch engineering teams at Netflix who had been using cloud computing for over a decade, forming a massive body of knowledge about its strengths and weaknesses.

 I wanted to write this book to share these experiences with the wider world. I have learned so much from open source communities, amazingly insightful and selfless individuals, and wicked smart data scientists that I feel obliged to try to give back. This book is surely not the end of my learning journey but merely a milestone. Hence, I would love to hear from you. Don’t hesitate to reach out to me and share your experiences, ideas, and feedback!

acknowledgments

 This book wouldn’t be possible without all the data scientists and engineers at Netflix and many other companies who have patiently explained their pain points, shared feedback, and allowed me to peek into their projects. Thank you! Keep the feedback coming.

 Metaflow was influenced and continues to be developed by a talented, passionate, and empathetic group of engineers: Savin Goyal, Romain Cledat, David Berg, Oleg Avdeev, Ravi Kiran Chirravuri, Valay Dave, Ferras Hamad, Jason Ge, Rob Hilton, Brett Rose, Abhishek Kapatkar, and many others. Your handprints are all over this book! It has been a privilege and a ton of fun to work with all of you. Also, I want to thank Kurt Brown, Julie Amundson, Ashish Rastogi, Faisal Siddiqi, and Prasanna Padmanabhan who have supported the project since its inception.

 I wanted to write this book with Manning because they have a reputation for publishing high-quality technical books. I wasn’t disappointed! I was lucky to get to work with an experienced editor, Doug Rudder, who made me a better author and turned the 1.5-year-long writing process into an enjoyable experience. A huge thanks goes to Nick Watts and Al Krinker for their insightful technical comments, as well as to all readers and reviewers who provided feedback during Early Access.

 To all the reviewers: Abel Alejandro Coronado Iruegas, Alexander Jung, David Patschke, David Yakobovitch, Edgar Hassler, Fibinse Xavier, Hari Ravindran, Henry Chen, Ikechukwu Okonkwo, Jesús A. Juárez Guerrero, Matthew Copple, Matthias Busch, Max Dehaut, Mikael Dautrey, Ninoslav Cerkez, Obiamaka Agbaneje, Ravikanth Kompella, Richard Vaughan, Salil Athalye, Sarah Catanzaro, Sriram Macharla, Tuomo Kalliokoski, and Xiangbo Mao, your suggestions helped make this a better book.

 Finally, I want to thank my wife and kids for being infinitely patient and supportive. Kids—if you ever read this sentence, I owe you an ice cream!

about this book

 Machine learning and data science applications are some of the most complex engineering artifacts built by humankind, if you consider the full stack of software and hardware that powers them. In this light, it is no surprise that today, in the early 2020s, building such applications doesn’t exactly feel easy.

 Machine learning and data science are here to stay. Applications powered by advanced data-driven techniques are only becoming more ubiquitous across industries. Hence, there is a clear need to make building and operating such applications a more painless and disciplined process. To quote Alfred Whitehead: “Civilization advances by extending the number of important operations which we can perform without thinking about them.”

 This book teaches you how to build an effective data science infrastructure that allows its users to experiment with innovative applications, deploy them to production, and improve them continuously without thinking about the technical details too much. There isn’t a single cookie-cutter approach that works for all use cases. Hence, this book focuses on general, foundational principles and components that you can implement in a way that makes sense in your environment.

Who should read this book?

 This book has the following two primary audiences:

 	
 Data scientists who want to understand the full stack of systems that make it possible to develop and deploy data science applications effectively in real-world business environments. Even if you don’t have a background in infrastructure engineering, DevOps, or software engineering in general, you can use this book to get a comprehensive idea of all the moving parts and learn something new.

 	
 Infrastructure engineers who are tasked to set up infrastructure to help data scientists. Even if you are experienced in DevOps or systems engineering, you can use this book to get a comprehensive idea of how the needs of data science differ from traditional software engineering, and correspondingly, how and why a different infrastructure stack is required to make data scientists productive.

 In addition, leaders of data science and platform engineering organizations can quickly scan through the book, because infrastructure shapes organizations and vice versa.

How this book is organized: A road map

 This book is organized around the full stack of data science infrastructure, which you can find printed on the inside front cover of the book. The stack is structured so that the most foundational, engineering-oriented layers are at the bottom and higher-level concerns related to data science are at the top. We will go through the stack roughly from the bottom up as follows:

 	
 Chapter 1 explains why data science infrastructure is needed in the first place. It will also motivate our human-centric approach to infrastructure.

 	
 Chapter 2 starts with the basics: what activities data scientists perform on a daily basis and how to optimize the ergonomics of their working environment.

 	
 Chapter 3 introduces Metaflow, an open source framework that we will use to demonstrate the concepts of effective infrastructure.

 	
 Chapter 4 focuses on scalable compute: all data science applications need to perform computation, sometimes at small scale, sometimes at large scale. We will make this possible using the cloud.

 	
 Chapter 5 focuses on performance: it is widely known that premature optimization is not a good idea. A better approach is to optimize code gradually, adding complexity only when needed.

 	
 Chapter 6 talks about production deployments: several crucial differences exist between prototyping and production environments, but moving between them shouldn’t be too hard.

 	
 Chapter 7 dives deep into another foundational concern of data science: data. We will investigate effective ways to integrate with modern data warehouses and data engineering teams.

 	
 Chapter 8 discusses data science applications in the context of surrounding business systems. Data science shouldn’t be an island—we will learn how to connect it to other systems to produce real business value.

 	
 Chapter 9 ties together all the layers of the stack by walking through a realistic, end-to-end deep learning application.

 	
 The appendix includes instructions for installing and configuring the Conda package manager for Metaflow.

 From chapter 3 onward, the chapters include small but realistic machine learning applications to demonstrate the concepts. No previous knowledge of machine learning or data science is required—we will just use these techniques for illustration. This book won’t teach you machine learning and data science techniques in depth—many excellent books already do that. Our focus is solely on the infrastructure that enables these applications.

 After you are done with the first three chapters, feel free to skip chapters that are not relevant for you. For instance, if you deal only with small-scale data, you can focus on chapters 3, 6, and 8.

About the code

 This book uses an open-source Python framework, Metaflow (https://metaflow.org), in all examples. However, the concepts and principles presented in this book are not specific to Metaflow. In particular, chapters 4–8 can be easily adapted to other frameworks, too. You can find all the source code presented in this book at https://github.com/outerbounds/dsbook.

 You can execute examples on an OS X or Linux laptop. You will just need a code editor and a terminal window. Lines that start with # python like this

 # python taxi_regression_model.py --environment=conda run

 are meant to be executed on a terminal. Optionally, many examples benefit from an AWS account, as instructed in chapter 4.

liveBook discussion forum

 Purchase of Effective Data Science Infrastructure includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/effective-data-science-infrastructure/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 If you get stuck, need additional help, or have feedback or ideas related to the topics of this book, you are very welcome to join our beginner-friendly online community at http://slack.outerbounds.co. You can also contact the author via LinkedIn (https://www.linkedin.com/in/villetuulos/) or on Twitter (@vtuulos). If you think you have found a bug in Metaflow, please open an issue at https://github.com/Netflix/metaflow/issues.

about the author

 [image: Tuulos_AuthorPhoto]

 Ville Tuulos has been developing infrastructure for machine learning for more than two decades. His journey includes academia, startups focusing on data and machine learning, as well as two global enterprises. He led the machine learning infrastructure team at Netflix, where he started Metaflow, an open source framework featured in this book. He is the CEO and co-founder of Outerbounds, a startup focusing on human-centric data science infrastructure.

about the cover illustration

 The figure on the cover of Effective Data Science Infrastructure is “Dame d’ausbourg,” or “Lady of Augsburg,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Introducing data science infrastructure

 This chapter covers

 	
Why companies need data science infrastructure in the first place

 	
Introducing the infrastructure stack for data science and machine learning

 	
Elements of successful data science infrastructure

 Machine learning and artificial intelligence were born in academia in the 1950s. Technically, everything presented in this book has been possible to implement for decades, if time and cost were not a concern. However, for the past seven decades, nothing in this problem domain has been easy.

 As many companies have experienced, building applications powered by machine learning has required large teams of engineers with specialized knowledge, often working for years to deliver a well-tuned solution. If you look back on the history of computing, most society-wide shifts have happened not when impossible things have become possible but when possible things have become easy. Bridging the gap between possible and easy requires effective infrastructure, which is the topic of this book.

 A dictionary defines infrastructure as “the basic equipment and structures (such as roads and bridges) that are needed for a country, region, or organization to function properly.” This book covers the basic stack of equipment and structures needed for data science applications to function properly. After reading this book, you will be able to set up and customize an infrastructure that helps your organization to develop and deliver data science applications faster and more easily than ever before.

 A word about terminology

 The phrase data science in its modern form was coined in the early 2000s. As noted earlier, the terms machine learning and artificial intelligence have been used for decades prior to this, alongside other related terms such as data mining or expert systems, which was trendy at one time.

 No consensus exists on what these terms mean exactly, which is a challenge. Professionals in these fields recognize nuanced differences between data science, machine learning, and artificial intelligence, but the boundaries between these terms are contentious and fuzzy, which must delight those who were excited about the term fuzzy logic in the 1970s and ’80s!

 This book is targeted at the union of the modern fields of data science, machine learning, and artificial intelligence. For brevity, we have chosen to use the term data science to describe the union. The choice of term is meant to be inclusive: we are not excluding any particular approach or set of methods.

 For the purposes of this book, the differences between these fields are not significant. In a few specific cases where we want to emphasize the differences, we will use more specific terms, such as deep neural networks. To summarize, whenever this book uses the term, you can substitute it with your preferred term if it makes the text more meaningful to you.

 If you ask someone in the field what the job of a data scientist is, you might get a quick answer: their job is to build models. Although that answer is not incorrect, it is a bit narrow. Increasingly, data scientists and engineers are expected to build end-to-end solutions to business problems, of which models are a small but important part. Because this book focuses on end-to-end solutions, we say that the data scientist’s job is to build data science applications. Hence, when you see the phrase used in this book, consider that it means “models and everything else required by an end-to-end solution.”

1.1 Why data science infrastructure?

 Many great books have been written about what data science is, why it is beneficial, and how to apply it in various contexts. This book focuses on questions related to infrastructure. Before we go into details on why we need infrastructure specifically for data science, let’s discuss briefly why any infrastructure exists at all.

 Consider how milk has been produced and consumed for millennia prior to the advent of industrial-scale farming in the 20th century. Many households had a cow or two, producing milk for the immediate needs of the family. Sustaining a cow required some expertise but not much technical infrastructure. If the family wanted to expand their dairy operation, it would have been challenging without investing in larger-scale feed production, head count, and storage mechanisms. In short, they were able to operate a small-scale dairy business with minimal infrastructure, but scaling up the volume of production would have required deeper investments than just acquiring another cow.

 Even if the farm could have supported a larger number of cows, they would have needed to distribute the extra milk outside the household for sale. This presents a velocity problem: if the farmer can’t move the milk fast enough, other farmers may sell their produce first, saturating the market. Worse, the milk may spoil, which undermines the validity of the product.

 Maybe a friendly neighbor is able to help with distribution and transports the milk to a nearby town. Our enterprising farmer may find that the local marketplace has an oversupply of raw milk. Instead, customers demand a variety of refined dairy products, such as yogurt, cheese, or maybe even ice cream. The farmer would very much like to serve the customers (and get their money), but it is clear that their operation isn’t set up to deal with this level of complexity.

 Over time, a set of interrelated systems emerged to address these needs, which today form the modern dairy infrastructure: industrial-scale farms are optimized for volume. Refrigeration, pasteurization, and logistics provide the velocity needed to deliver high-quality milk to dairy factories, which then churn out a wide variety of products that are distributed to grocery markets. Note that the dairy infrastructure didn’t displace all small-scale farmers: there is still a sizable market for specialized produce from organic, artisanal, family farms, but it wouldn’t be feasible to satisfy all demand in this labor-intensive manner.

 The three Vs—volume, velocity, and variety—were originally used by Professor Michael Stonebraker to classify database systems for big data. We added validity as the fourth dimension because it is highly relevant for data science. As a thought exercise, consider which of these dimensions matter the most in your business context. In most cases, the effective data science infrastructure should strike a healthy balance between the four dimensions.

1.1.1 The life cycle of a data science project

 For the past seven decades, most data science applications have been produced in a manner that can be described as artisanal, by having a team of senior software engineers to build the whole application from the ground up. As with dairy products, artisanal doesn’t imply “bad”—often quite the opposite. The artisanal way is often the right way to experiment with bleeding-edge innovations or to produce highly specialized applications.

 However, as with dairy, as the industry matures and needs to support a higher volume, velocity, validity, and variety of products, it becomes rational to build many, if not most, applications on a common infrastructure. You may have a rough idea of how raw milk turns into cheese and what infrastructure is required to support industrial-scale cheese production, but what about data science? Figure 1.1 illustrates a typical data science project.

 [image: CH01_F01_Tuulos]

 Figure 1.1 Life cycle of a data science project

 	
 At the center, we have a data scientist who is asked to solve a business problem, for instance, to create a model to estimate the lifetime value of a customer or to create a system that generates personalized product recommendations in an email newsletter.

 	
 The data scientist starts the project by coming up with hypotheses and experiments. They can start testing ideas using their favorite tools of the trade: Jupyter notebooks, specialized languages like R or Julia, or software packages like MATLAB or Mathematica.

 	
 When it comes to prototyping machine learning or statistical models, excellent open source packages are available, such as Scikit-Learn, PyTorch, TensorFlow, Stan, and many others. Thanks to excellent documentation and tutorials available online, in many cases it doesn’t take long to put together an initial prototype using these packages.

 	
 However, every model needs data. Maybe suitable data exists in a database. Extracting a static sample of data for a prototype is often quite straightforward, but handling a larger dataset, say, tens of gigabytes, may get more complicated. At this point, the data scientist is not even worrying how to get the data to update automatically, which would require more architecture and engineering.

 	
 Where does the data scientist run the notebook? Maybe they can run it on a laptop, but how are they going to share the results? What if their colleagues want to test the prototype, but they don’t have a sufficiently powerful laptop? It might be convenient to execute the experiment on a shared server—in the cloud—where all collaborators can access it easily. However, someone needs to set up this environment first and make sure that the required tools and libraries, as well as data, are available on the server.

 	
 The data scientist was asked to solve a business problem. Very few companies conduct their business in notebooks or other data science tools. To prove the value of the prototype, it is not sufficient that the prototype exists in a notebook or other data science environment. It needs to be integrated into the surrounding business infrastructure. Maybe those systems are organized as microservices, so it would be beneficial if the new model could be deployed as a microservice, too. Doing this may require quite a bit of experience and knowledge in infrastructure engineering.

 	
 Finally, after the prototype has been integrated to surrounding systems, stakeholders—product managers and business owners—evaluate the results and give feedback to the data scientist. Two outcomes can occur: either the stakeholders are optimistic with the results and shower the data scientist with further requests for improvement, or they deem that the scientist’s time is better spent on other, more promising business problems. Remarkably, both outcomes lead to the same next step: the whole cycle starts again from the beginning, either focusing on refining the results or working on a new problem.

 Details of the life cycle will naturally vary between companies and projects: How you develop a predictive model for customer lifetime value differs greatly from building self-driving cars. However, all data science and machine learning projects have the following key elements in common:

 	
 In the technical point of view, all projects involve data and computation at their foundation.

 	
 This book focuses on practical applications of these techniques instead of pure research, so we expect that all projects will eventually need to address the question of integrating results into production systems, which typically involves a great deal of software engineering.

 	
 Finally, from the human point of view, all projects involve experimentation and iteration, which many consider to be the central activity of data science.

 Although it is certainly possible for individuals, companies, or teams to come up with their own bespoke processes and practices to conduct data science projects, a common infrastructure can help to increase the number of projects that can be executed simultaneously (volume), speed up the time to market (velocity), ensure that the results are robust (validity), and make it possible to support a larger variety of projects.

 Note that the scale of the project, that is, the size of the data set or model, is an orthogonal concern. In particular, it would be a mistake to think that only large-scale projects require infrastructure. Often the situation is quite the opposite.

 Is this book for me?

 If the questions and potential solutions related to the life cycle of a data science project resonate with you, you should find this book useful. If you are a data scientist, you may have experienced some of the challenges firsthand. If you are an infrastructure engineer looking to design and build systems to help data scientists, you probably want to find scalable, robust solutions to these questions, so you don’t have to wake up at night when something breaks.

 We will systematically go through the stack of systems that make a modern, effective infrastructure for data science. The principles covered in this book are not specific to any particular implementation, but we will use an open source framework, Metaflow, to show how the ideas can be put into practice. Alternatively, you can customize your own solution by using other off-the-shelf libraries. This book will help you to choose the right set of tools for the job.

 It is worth noting that perfectly valid, important scenarios exist where this book does not apply. This book, and data science infrastructure in general, is probably not relevant for you if you are in the following situations:

 	
 You are focusing on theoretical research and not applying the methods and results in practical use cases.

 	
 You are in the early phases (steps 1-4 as described earlier) of your first applied data science project, and everything is going smoothly.

 	
 You are working on a very specific, mature application, so optimizing the volume, velocity, and variety of projects doesn’t concern you.

 In these cases, you can return to this book later when more projects start coming up or you start hitting tough questions like the ones faced by our data scientist earlier. Otherwise, keep on reading! In the next section, we introduce an infrastructure stack that provides the overall scaffolding for everything that we will discuss in the later chapters.

1.2 What is data science infrastructure?

 How does new infrastructure emerge? In the early days of the World Wide Web in the 1990s, no infrastructure existed besides primordial web browsers and servers. During the dot-com boom, setting up an e-commerce store was a major technical feat, involving teams of people, lots of custom C or C++ code, and a deep-pocketed venture capitalist.

 Over the next decade, a Cambrian explosion of web frameworks started to converge to common infrastructure stacks like LAMP (Linux, Apache, MySQL, PHP/ Perl/Python). By 2020, a number of components, such as the operating system, the web server, and databases, have become commodities that few people have to worry about, allowing most developers to focus on the user-facing application layer using polished high-level frameworks like ReactJS.

 The infrastructure for data science is going through a similar evolution. Primordial machine learning and optimization libraries have existed for decades without much other infrastructure. Now, in the early 2020s, we are experiencing an explosion of data science libraries, frameworks, and infrastructures, often driven by commercial interests, similar to what happened during and immediately after the dot-com boom. If history is any proof, widely shared patterns will emerge from this fragmented landscape that will form the basis of a common, open source infrastructure stack for data science.

 When building any infrastructure, it is good to remember that infrastructure is just a means to an end, not an end in itself. In our case, we want to build infrastructure to make data science projects—and data scientists who are responsible for them, more successful—as illustrated in figure 1.2.

 [image: CH01_F02_Tuulos]

 Figure 1.2 Summarizing the key concerns of this book

 The goal of the stack, which is introduced in the next section, is to unlock the four Vs: it should enable a greater volume and variety of projects, delivered with a higher velocity, without compromising validity of results. However, the stack doesn’t deliver projects by itself—successful projects are delivered by data scientists whose productivity is hopefully greatly improved by the stack.

1.2.1 The infrastructure stack for data science

 What exactly are the elements of the infrastructure stack for data science? Thanks to the culture of open source and relatively free technical information sharing between companies in Silicon Valley and globally, we have been able to observe and collect common patterns in data science projects and infrastructure components. Though implementation details vary, the major infrastructural layers are relatively uniform across a large number of projects. The purpose of this book is to distill and describe these layers and the infrastructure stack that they form for data science.

 The stack presented in figure 1.3 is not the only valid way to build infrastructure for data science. However, it should be a well-justified one: if you start from first principles, it is rather hard to see how you could execute data science projects successfully without addressing all layers of the stack somehow. As an exercise, you can challenge any layer of the stack and ask what would happen if that layer didn’t exist.

 Each layer can be implemented in various ways, driven by the specific needs of its environment and use cases but the big picture is remarkably consistent.

 [image: CH01_F03_Tuulos]

 Figure 1.3 The infrastructure stack for data science

 This infrastructure stack for data science is organized so that the most fundamental, generic components are at the bottom of the stack. The layers become more specific to data science toward the top of the stack.

 The stack is the key mental model that binds together the chapters of this book. By the time you get to the last chapter, you will be able to answer questions like why the stack is needed, what purpose each layer serves, and how to make appropriate technical choices at each layer of the stack. Because you will be able to build infrastructure with a coherent vision and architecture, it will provide a seamless, delightful experience to data scientists using it. To give you a high-level idea what the layers mean, let’s go through them one by one from the bottom up.

 Data Warehouse

 The data warehouse stores input data used by applications. In general, it is beneficial to rely on a single centralized data warehouse that acts as a common source of truth, instead of building a separate warehouse specifically for data science, which can easily lead to diverging data and definitions. Chapter 7 is dedicated to this broad and deep topic.

 Compute Resources

 Raw data doesn’t do anything by itself—you need to run computations, such as data transformations or model training, to turn it into something more valuable. Compared to other fields of software engineering, data science tends to be particularly compute-hungry. Algorithms used by data scientists come in many shapes and sizes. Some need many CPU cores, some GPUs, and some a lot of memory. We need a compute layer that can smoothly scale to handle many different types of workloads. We cover these topics in chapters 4 and 5.

 Job Scheduler

 Arguably, nothing in data science is a one-time operation: models should be retrained regularly and predictions produced on demand. Consider a data science application as a continuously humming engine that pushes a never-ending stream of data through models. It is the job of the scheduling layer to keep the machine running at the desired cadence. Also, the scheduler helps to structure and execute applications as workflows of interrelated steps of computation. The topics of job scheduling and workflow orchestration are discussed in chapters 2, 3, and 6.

 Versioning

 Experimentation and iteration are defining features of data science projects. As a result, applications are always subject to change. However, progress is seldom linear. Often, we don’t know upfront which version of the application is an improvement over others. To judge the versions properly, you need to run multiple versions side by side, as an A/B experiment. To enable rapid but disciplined development and experimentation, we need a robust versioning layer to keep the work organized. Topics related to versioning are discussed in chapters 3 and 6.

 Architecture

 In addition to core data science work, it takes a good amount of software engineering to build a robust, production-ready data science application. Increasingly many companies find it beneficial to empower data scientists, who are not software engineers by training, to build these applications autonomously while supporting them with a robust infrastructure. The infrastructure stack must provide software scaffolding and guide rails for data scientists, ensuring that the code they produce follows architectural best practices. We introduce Metaflow, an open source framework that codifies many such practices, in chapter 3.

 Model Operations

 Data science applications don’t have inherent value—they become valuable only when connected to other systems, such as product UIs or decision support systems. Once the application is deployed, to be a critical part of a product experience or business operations, it is expected to stay up and deliver correct results under varying conditions. If and when the application fails, as all production systems occasionally do, systems must be in place to allow quick detection, troubleshooting, and fixing of errors. We can learn a lot from the best practices of traditional software engineering, but the changing nature of data and probabilistic models give data science operations a special flavor, which we discuss in chapters 6 and 8.

 Feature Engineering

 On top of the engineering-oriented layers sit the core concerns of data science. First, the data scientist must discover suitable raw data, determine desirable subsets of it, develop transformations, and decide how to feed the resulting features into models. Designing pipelines like this is a major part of the data scientist’s daily work. We should strive to make the process as efficient as possible, both in the point of view of human productivity as well as computational complexity. Effective solutions are often quite specific to each problem domain, so our infrastructure should be capable of supporting various approaches to feature engineering as discussed in chapters 7 and 9.

 Model development

 Finally, at the very top of the stack is the layer of model development: the quest for finding and describing a mathematical model that transforms features into desired outputs. We expect this layer to be solidly in the domain of expertise of a data scientist, so the infrastructure doesn’t need to get too opinionated about the modeling approach. We should be able to support a wide variety of off-the-shelf libraries, so the scientist has the flexibility to choose the best tool for the job.

 If you are new to the field, it may come as a surprise to many that model development occupies only a tiny part of the end-to-end machinery that makes an effective data science application. Compare the model development layer to the human brain, which makes up only 2-3% of one’s total body weight.

1.2.2 Supporting the full life cycle of a data science project

 The goal of the infrastructure stack is to support a typical data science project throughout its life cycle, from its inception and initial deployment to countless iterations of incremental improvement. Earlier, we identified the following three common themes that are common to most data science projects. Figure 1.4 shows how the themes map to the stack.

 [image: CH01_F04_Tuulos]

 Figure 1.4 Concerns of a data science project mapped to the infrastructure layers

 	
 It is easy to see that every data science project regardless of the problem domain needs to deal with data and compute, so these layers form the foundational infrastructure. These layers are agnostic of what exactly gets executed.

 	
 The middle layers define the software architecture of an individual data science application: what gets executed and how—the algorithms, data pipelines, deployment strategies, and distribution of the results. Much about the work is about integrating existing software components.

 	
 The top of the stack is the realm of data science : defining a mathematical model and how to transform raw input to something that the model can process. In a typical data science project, these layers can evolve quickly as the data scientist experiments with different approaches.

 Note that there isn’t a one-to-one mapping between the layers and the themes. The concerns overlap. We use the stack as a blueprint for designing and building the infrastructure, but the user shouldn’t have to care about it. In particular, they shouldn’t hit the seams between the layers, but they should use the stack as one effective data science infrastructure.

 In the next chapter, we will introduce Metaflow, a framework that provides an example of how this can be achieved in practice. Alternatively, you can customize your own solution by combining frameworks that address different parts of the stack by following the general principles laid out in the coming chapters.

1.2.3 One size doesn’t fit all

 What if your company needs a highly specialized data science application—a self-driving car, a high-frequency trading system, or a miniaturized model that can be deployed on resource constrained Internet of Things devices? Surely the infrastructure stack would need to look very different for such applications. In many such cases, the answer is yes—at least initially.

 Let’s say your company wants to deliver the most advanced self-flying drone to the market. The whole company is rallied around developing one data science application: a drone. Naturally, such a complex project involves many subsystems, but ultimately the end result is to produce one application, and hence, volume or variety are not the top concerns. Unquestionably, velocity and validity matter, but the company may feel that a core business concern requires a highly customized solution.

 You can use the quadrants depicted in figure 1.5 to evaluate whether your company needs a highly customized solution or a generalized infrastructure.

 [image: CH01_F05_Tuulos]

 Figure 1.5 Types of infrastructure

 A drone company has one special application, so they may focus on building a single custom application because they don’t have the variety and the volume that would necessitate a generalized infrastructure. Likewise, a small startup pricing used cars using a predictive model can quickly put together a basic application to get the job done—again, no need to invest in infrastructure initially.

 In contrast, a large multinational bank has hundreds of data science applications from credit rating to risk analysis and trading, each of which can be solved using well-understood (albeit sophisticated—“common” doesn’t imply simple or unadvanced in this context) models, so a generalized infrastructure is well justified. A research institute for bioinformatics may have many highly specialized applications, which require very custom infrastructure.

 Over time, companies tend to gravitate toward generalized infrastructure, no matter where they start. A drone company that initially had a custom application will eventually need other data science applications to support sales, marketing, customer service, or maybe another line of products. They may keep a specialized application or even custom infrastructure for their core technology while employing generalized infrastructure for the rest of the business.

 Note When deciding on your infrastructure strategy, consider the broadest set of use cases, including new and experimental applications. It is a common mistake to design the infrastructure around the needs of a few most visible applications, which may not represent the needs of the majority of (future) use cases. In fact, the most visible applications may require a custom approach that can coexist alongside generalized infrastructure.

 Custom applications may have unique needs when it comes to scale (think Google Search) or performance (think high-frequency trading applications that must provide predictions in microseconds). Applications like this often necessitate an artisanal approach: they need to be carefully crafted by experienced engineers, maybe using specialized hardware. A downside is that specialized applications often have hard time optimizing for velocity and volume (special skills required limit the number of people who can work on the app), and they can’t support a variety of applications by design.

 Consider carefully what kind of applications you will need to build or support. Today, most data science applications can be supported by generalized infrastructure, which is the topic of this book. This is beneficial because it allows you to optimize for volume, velocity, variety, and validity. If one of your applications has special needs, it may require a more custom approach. In this case, it might make sense to treat the special application as a special case while letting the other applications benefit from generalized infrastructure.

1.3 Why good infrastructure matters

 As we went through the eight layers of the infrastructure stack, you got a glimpse of the wide array of technical components that are needed to build modern data science applications. In fact, large-scale machine learning applications like personalized recommendations for YouTube or sophisticated models that optimize banner ads in real time—a deliberately mundane example—are some of the most complex machines ever built by humankind, considering the hundreds of subsystems and tens of millions of lines of code involved.

 Building infrastructure for the dairy industry, following our original example, probably involves an order of magnitude less complexity than many production-grade data science applications. Much of the complexity is not visible on the surface, but it surely becomes visible when things fail.

 To illustrate the complexity, imagine having the aforementioned eight-layer stack powering a data science project. Remember how a single project can involve many interconnected machines, with each machine representing a sophisticated model. A constant flow of fresh data, potentially large amounts of it, goes through these machines. The machines are powered by a compute platform that needs to manage thousands of machines of various sizes executing concurrently. The machines are orchestrated by a job scheduler, which makes sure that data flows between the machines correctly and each machine executes at the right moment.

 We have a team of data scientists working on these machines, each of them experimenting with various versions of the machine that is allocated for them in rapid iterations. We want to ensure that each version produces valid results, and we want to evaluate them in real time by executing them side by side. Every version needs its own isolated environment to ensure that no interference occurs between the versions.

 This scenario should evoke a picture of a factory, employing teams of people and hundreds of incessantly humming machines. In contrast to an industrial-era factory, this factory isn’t built only once but it is constantly evolving, slightly changing its shape multiple times a day. Software isn’t bound by the limitations of the physical world, but it is bound to produce ever-increasing business value.

 The story doesn’t end here. A large or midsize modern company doesn’t have only a single factory, a single data science application, but can have any number of them. The sheer volume of applications causes operational burden, but the main challenge is variety: every real-world problem domain requires a different solution, each with its own requirements and characteristics, leading to a diverse set of applications that need to be supported. As a cherry on top of the complexity cake, the applications are often interdependent.

 For a concrete example, consider a hypothetical midsize e-commerce store. They have a custom recommendation engine (“These products are recommended to you!”); a model to measure the effectiveness of marketing campaigns (“Facebook ads seem to be performing better than Google Ads in Connecticut.”); an optimization model for logistics (“It is more efficient to dropship category B versus keeping them in stock.”); and a financial forecasting model for estimating churn (“Customers buying X seem to churn less.”). Each of these four applications is a factory in itself. They may involve multiple models, multiple data pipelines, multiple people, and multiple versions.

1.3.1 Managing complexity

 This complexity of real-life data science applications poses a number of challenges to the infrastructure. There isn’t a simple, nifty technical solution to the problem. Instead of treating complexity as a nuisance that can be swept or abstracted away, we make managing complexity a key goal of effective infrastructure. We address the challenge on multiple fronts, as follows:

 	
 Implementation—Designing and implementing infrastructure that deals with this level of complexity is a nontrivial task. We will discuss strategies to address the engineering challenge later.

 	
 Usability—It is a key challenge of effective infrastructure to make data scientists productive despite the complexities involved, which is a key motivation for human-centric infrastructure introduced later.

 	
 Operations—How do we keep the machines humming with minimal human intervention? Reducing the operational burden of data science applications is another key goal of the infrastructure, which is a common thread across chapters of this book.

 In all these cases, we must avoid introducing incidental complexity, or complexity that is not necessitated by the problem itself but is an unwanted artifact of a chosen approach. Incidental complexity is a huge problem for real-world data science because we have to deal with such a high level of inherent complexity that distinguishing between real problems and imaginary problems becomes hard.

 You may have heard of boilerplate code (code that exists just to make a framework happy), spaghetti pipelines (poorly organized relationships between systems), or dependency hells (managing a constantly evolving graph of third-party libraries is hard). On top of these technical concerns, we have incidental complexity caused by human organizations: sometimes we have to introduce complex interfaces between systems, not because they are necessary technically, but because they follow the organizational boundaries, for example, between data scientists and data engineers. You can read more about these issues in a frequently cited paper called “Hidden Technical Debt in Machine Learning Systems,” which was published by Google in 2015 (http://mng.bz/Dg7n).

 An effective infrastructure helps to expose and manage inherent complexity, which is the natural state of the world we live in, while making a conscious effort to avoid introducing incidental complexity. Doing this well is hard and requires constant judgment. Fortunately, we have one time-tested heuristic for keeping incidental complexity in check, namely, simplicity. “Everything should be made as simple as possible, but no simpler” is a core design principle that applies to all parts of the effective data science infrastructure.

1.3.2 Leveraging existing platforms

 Our job, as described in the previous sections, is to build effective, generalized infrastructure for data science based on the eight-layer stack. We want to do this in a manner that makes real-world complexity manageable while minimizing extra complexity caused by the infrastructure itself. This may sound like a daunting task.

 Very few companies can afford dedicating large teams of engineers for building and maintaining infrastructure for data science. Smaller companies may have one or two engineers dedicated to the task, whereas larger companies may have a small team. Ultimately, companies want to produce business value with data science applications. Infrastructure is a means to this end, not a goal in itself, so it is rational to determine the size of the infrastructure investment accordingly. All in all, we can spend only a limited amount of time and effort in building and maintaining infrastructure.

 Luckily, as noted in the very beginning of this chapter, everything presented in this book has been possible to implement technically for decades, so we don’t have to start from scratch. Instead of inventing new hardware, operating systems, or data warehouses, our job is to leverage the best-of-the-breed platforms available and integrate them to make it easy to prototype and productionize data science applications.

 Engineers often underestimate the gap between “possible” and “easy,” as illustrated in figure 1.6. It is easy to keep reimplementing things in various ways on the “possible” side of the chasm, without truly answering the question how to make things fundamentally easier. However, it is only the “easy” side of the chasm that enables us to maximize the four Vs—volume, velocity, variety, and validity of data science applications—so we shouldn’t spend too much time on the left bank.

 [image: CH01_F06_Tuulos]

 Figure 1.6 Infrastructure makes possible things easy.

 This book helps you to build the bridge first, which is a nontrivial undertaking by itself, leveraging existing components whenever possible. Thanks to our stack with distinct layers, we can let other teams and companies worry about individual components. Over time, if some of them turn out to be inadequate, we can replace them with better alternatives without disrupting users.

 Head in the clouds

 Cloud computing is a prime example of a solution that makes many things technically possible, albeit not always easy. Public clouds, such as Amazon Web Services, Google Compute Platform, and Microsoft Azure, have massively changed the infrastructure landscape by allowing anyone to access foundational layers that were previously available only to the largest companies. These services are not only technically available but also drastically cost-effective when used thoughtfully.

 Besides democratizing the lower layers of infrastructure, the cloud has qualitatively changed the way we should architect infrastructure. Previously, many challenges in architecting systems for high-performance computing revolved around resource management: how to guard and ration access to limited compute and storage resources, and, correspondingly, how to make resource usage as efficient as possible.

 The cloud allows us to change our mindset. All the clouds provide a data layer, like Amazon S3, which provides a virtually unlimited amount of storage with close to a perfect level of durability and high availability. Similarly, they provide nearly infinite, elastically scaling compute resources like Amazon Elastic Compute Cloud (Amazon EC2) and the abstractions built on top of it. We can architect our systems with the assumption that we have an abundant amount of compute resources and storage available and focus on cost-effectiveness and productivity instead.

 This book operates with the assumption that you have access to cloudlike foundational infrastructure. By far the easiest way to fulfill the requirement is to create an account with one of the cloud providers. You can build and test the stack for a few hundred dollars, or possibly for free by relying on the free tiers that many clouds offer. Alternatively, you can build or use an existing private cloud environment. How to build a private cloud is outside the scope of this book, however.

 All the clouds also provide higher-level products for data science, such as Azure Machine Learning (ML) Studio and Amazon SageMaker. You can typically use these products as end-to-end platforms, requiring minimal customization, or, alternatively, you can integrate parts of them in your own systems. This book takes the latter approach: you will learn how to build your own stack, leveraging various services provided by the cloud as well as using open source frameworks. Although this approach requires more work, it affords you greater flexibility, the result is likely to be easier to use, and the custom stack is likely to be more cost-efficient as well. You will learn why this is the case throughout the coming chapters.

 To summarize, you can leverage the clouds to take care of low-level, undifferentiated technical heavy lifting. This allows you to focus your limited development budget on unique, differentiating business needs and, most important, on optimizing data scientist productivity in your organization. We can use the clouds to increasingly shift our focus from technical matters to human matters, as we will describe in the next section.

1.4 Human-centric infrastructure

 The infrastructure aims at maximizing the productivity of the organization on multiple fronts. It supports more projects, delivered faster, with more reliable results, covering more business domains. To better understand how infrastructure can make this happen, consider the following typical bottlenecks that occur when effective infrastructure is not available:

 	
 Volume—We can’t support more data science applications simply because we don’t have enough data scientists to work on them. All our existing data scientists are busy improving and supporting existing applications.

 	
 Velocity—We can’t deliver results faster because developing a production-ready version of model X would be a major engineering effort.

 	
 Validity—A prototype of the model was working fine in a notebook, but we didn’t consider that it might receive data like Y, which broke it in production.

 	
 Variety—We would love to support a new use case Z, but our data scientists only know Python, and the systems around Z only support Java.

 A common element in all these cases is that humans are the bottleneck. Besides some highly specialized applications, it rarely happens that projects can’t be delivered because of fundamental limitations in hardware or software. A typical bottleneck is caused by the fact that humans can’t deliver software (or hardware, if operating outside the cloud) fast enough. Even if they were capable of hacking code fast enough, they may be busy maintaining existing systems, which is another critically human activity.

 This observation helps us to realize that although “infrastructure” sounds very technical, we are not building infrastructure for the machines. We are building infrastructure to make humans more productive. This realization has fundamental ramifications to how we should think about and design infrastructure for data scientists—for fellow human beings, instead of for machines.

 For instance, if we assume that human-time is more expensive than computer-time, which is certainly true for most data scientists, it makes sense to use a highly expressive, productivity-boosting language like Python instead of a low-level language like C++, even if it makes workloads more inefficient to process. We will dig deeper into this question in chapter 5.

 In the previous section, we noted how we want to leverage existing platforms to their fullest extent and integrate them to form our infrastructure stack. Our goal should be to do this in a manner that provides a cohesive user experience, minimizing the cognitive overhead that the user would have to experience if they had to understand and operate each layer independently. Our hypothesis is that by reducing the cognitive overhead related to the infrastructure, we can boost productivity of data scientists in the area where it matters the most, namely, data science itself.

1.4.1 Freedom and responsibility

 Netflix, the streaming video company, is well-known for its unique culture, which is described in detail in a recent book, No Rules Rules: Netflix and the Culture of Reinvention (Penguin Press, 2020) by Erin Meyer and Reed Hastings, a cofounder and long-time CEO of Netflix. One of Netflix’s core values is “freedom and responsibility,” which empowers all employees with a great degree of freedom to determine how they do their job. The other side of the coin is that the employees are always expected to consider what is in the best interest of the company and act responsibly. Metaflow, a framework for human-centric data science infrastructure, which we will introduce in chapter 3, was born at Netflix where it was heavily influenced by the company’s culture.

 We can apply the concept of freedom and responsibility to the work of data scientists and to the data science infrastructure in general. We expect that data scientists are experts in their own domain, such as in matters related to feature engineering and model development. We don’t expect that they are experts in systems engineering or other topics related to infrastructure. However, we expect that they are responsible enough to choose to leverage data science infrastructure, if it is made available. We can map this idea to our infrastructure stack as shown in figure 1.7.

 [image: CH01_F07_Tuulos]

 Figure 1.7 Infrastructure complements the interests of a data scientist.

 The triangle on the left side depicts the areas of expertise and interest of data scientists. It is the widest at the top of the stack, which is most specific to data science. The infrastructure should grant them the most freedom at these layers, allowing them to freely choose the best modeling approaches, libraries, and features based on their expertise. We expect data scientists to be autonomous—more about that later—so they should care about model operations, versioning, and architecture a bit, which is a part of their responsibility.

 The triangle on the right side depicts the freedom and responsibility of the infrastructure team. The infrastructure team should have the greatest degree of freedom to choose and optimize the lowest layers of the stack, which are critical in the technical point of view. They can do it without limiting the freedom of data scientists too much. However, their responsibility lessens toward the top of the stack. The infrastructure team can’t be responsible for the models themselves, because often they don’t have the expertise and definitely not the scale to support all use cases.

 The purpose of this arrangement is twofold: on the one hand, we can maximize the productivity and happiness of an individual data scientist by letting them focus on things they like and know how to execute well with a great degree of freedom. On the other hand, we can realize the four Vs, which are in the interest of the company, by asking data scientists to use the stack responsibly, including the parts in the middle which they may feel less passionate about. The result is a healthy balance between the needs of the company and the happiness of the data scientist.

1.4.2 Data scientist autonomy

 Thus far, we have casually talked about “the infrastructure team” and “data scientists.” However, the actual cast of characters in a data science project can be more colorful, as shown next:

 	
 A data scientist or machine learning researcher develops and prototypes machine learning or other data science models.

 	
 A machine learning engineer implements the model in a scalable, production-ready way.

 	
 A data engineer sets up data pipelines for input and output data, including data transformations.

 	
 A DevOps engineer deploys applications in production and makes sure that all the systems stay up and running flawlessly.

 	
 An application engineer integrates the model with other business components, such as web applications, which are the consumers of the model.

 	
 An infrastructure or platform engineer provides general pieces of infrastructure, such as data warehouses or compute platforms, for many applications to use.

 In addition to this technical team, the data science project may have involvement from business owners, who understand the business context of the application; product managers, who map the business context to technical requirements; and project/program managers who help to coordinate cross-functional collaboration.

 Anyone who has been involved in a project that involves many stakeholders knows how much communication and coordination is required to keep the project moving forward. Besides the coordination overhead, it can be challenging to increase the number of concurrent data science projects for the simple reason that there are not enough people to fill all the roles in all the projects. For these and many other reasons, many companies find it desirable to reduce the number of people involved in projects, as long as the execution of projects doesn’t suffer.

 The goal of our infrastructure stack is to make it possible to merge the first four technical roles so that the data scientist is empowered to take care of all these functions autonomously within a project. These roles may still exist in the company, but instead of every project requiring these roles to be present, the roles can be assigned to a few key projects, or they can support more horizontal, cross-project efforts.

 To summarize, the data scientist, who is not expected to suddenly become an expert in DevOps or data engineering, should be able to implement models in a scalable manner, to set up data pipelines, and to deploy and monitor models in production independently. They should be able to do this with minimal additional overhead, allowing them to maintain focus on data science. This is the key value proposition of our human-centric data science infrastructure, which we will start building in the next chapters from the ground up.

Summary

 	
 Although it is possible to develop and deliver data science projects without dedicated infrastructure, effective infrastructure makes it possible to develop a greater volume and variety of projects, delivered with a higher velocity, without compromising the validity of results.

 	
 A full infrastructure stack of systems is needed to support data scientists, from foundational layers like data and compute to higher-level concerns like feature engineering and model development. This book will go through all the layers systematically.

 	
 There isn’t a one-size-fits-all approach to data science. It is beneficial to be able to customize layers of the infrastructure stack to address your specific needs, which this book will help you do.

 	
 A modern data science application is a sophisticated, complex machine, involving many moving pieces. Managing this inherent complexity well, as well as avoiding introducing any unnecessary complexity while doing it, is a key challenge of data science infrastructure.

 	
 Leveraging existing, battle-hardened systems, such as public clouds, is a good way to keep complexity in check. The coming chapters will help you to choose suitable systems at each layer of the stack.

 	
 Ultimately, humans tend to be the bottleneck in data science projects. Our key focus should be to improve the usability of the whole stack and, hence, improve the productivity of data scientists.

2 The toolchain of data science

 This chapter covers

 	
The key activities that the data scientist engages in on a daily basis

 	
The essential toolchain that makes the data scientist productive

 	
The role of workflows in the infrastructure stack

 Every profession has its tools of the trade. If you are a carpenter, you need saws, rulers, and chisels. If you are a dentist, you need mirrors, drills, and syringes. If you are a data scientist, what are the essential tools that you need in your daily job?

 Obviously, you need a computer. But what’s the purpose of the computer? Should it be used to run heavy computation, train models, and such, or should it be just a relatively dumb terminal for typing code and analyzing results? Because production applications execute outside personal laptops, maybe prototyping should happen as close to the real production environment as possible, too. Answering questions like this can be surprisingly nontrivial, and the answers can have deep implications for the whole infrastructure stack.

 As we highlighted in chapter 1, ultimately these tools exist to boost the productivity of the data scientist. We must carefully think through the actions that form the body of the data scientist’s daily work: exploring and analyzing data, writing code, evaluating it, and inspecting results. How can we make these actions as frictionless as possible, knowing that they may be repeated hundreds of times every day? There isn’t a single right answer. This chapter will give you food for thought and technical guidance for setting up a toolchain that works for your company and technical environment.

 Think of the full stack of data science as a jet fighter—a complex feat of engineering consisting of a myriad of interconnected components. This chapter deals with the cockpit and the dashboard that the pilot uses to operate the machine. In the engineering point of view, the cockpit might feel a bit secondary, essentially just a control stick and a bunch of buttons (or in the case of data science, just an editor and a notebook) compared to 30,000 pounds of heavy engineering underneath, but often it is the component that determines the success or failure of a mission.

 Following the journey of a data scientist

 To make the discussion more concrete and grounded to the needs of real-world businesses, we will follow the journey of a hypothetical data scientist, Alex, throughout the book. Alex’s journey features typical challenges that a data scientist faces in a modern business environment. Alex helps to keep our focus on human-centric infrastructure and to demonstrate how infrastructure can grow incrementally together with the company. Each section begins with a motivating scenario related to Alex’s life at work, which we will analyze and address in the section in detail.

 Besides Alex the data scientist, the cast of characters includes Harper, who is the founder of the startup where Alex works. We will also meet Bowie, who is an infrastructure engineer whose duties include providing support for data scientists. This book is targeted at all the Alexes and Bowies out there, but the broader context might be interesting for Harpers, too.

 Alex has a PhD in marine biology. After realizing that people with skills in statistical analysis, basic machine learning, and rudimentary knowledge of Python are highly valued as data scientists, Alex decides to move from academia to industry.

 [image: CH02_00_UN01_Tuulos]

2.1 Setting up a development environment

 Alex joins Harper’s startup, Caveman Cupcakes, which manufactures and delivers soon-to-be-personalized paleo cupcakes, as its first data scientist. Bowie, who is an infrastructure engineer at Caveman, helps Alex get started. Alex asks Bowie if data scientists at Caveman can use Jupyter notebooks to get their job done. It would be great if they did, because Alex became very familiar with notebooks in academia. Hearing this makes Bowie realize that data scientists have special tooling needs. What tools should they install, and how should they be configured to make Alex most productive?

 [image: CH02_00_UN02_Tuulos]

 If you have time to set up only one piece of infrastructure well, make it the development environment for data scientists. Although this may sound obvious, you would be surprised to know how many companies have a well-tuned, scalable production infrastructure, but the question of how the code is developed, debugged, and tested in the first place is solved in an ad hoc manner. Instead of treating personal workstations merely as an IT problem, we should consider the development environment as an integral part of the effective infrastructure. After all, arguably the most important success factor of any data science project is the people involved and their productivity.

 A dictionary defines ergonomics as “the study of people’s efficiency in their working environment,” which nicely summarizes the focus of this chapter. The development environment for data science needs to optimize the ergonomics of the following two human activities:

 	
 Prototyping—The iterative process that translates human knowledge and expertise into functional code and models

 	
 Interaction with production deployments—The act of connecting the code and models to surrounding systems and operating these production deployments so that they can produce sustainable business value

OEBPS/OEBPS/Images/CH01_F07_Tuulos.png
How much a data
scientist cares

Model development

Feature engineering

Model operations

Architecture

Versioning

Job scheduler

Compute resources

Data warehouse

How much data
infrastructure is
needed

OEBPS/OEBPS/Images/CH01_F03_Tuulos.png
Model development

Feature engineering

Model operations

Architecture

Versioning

Job scheduler

Compute resources

Data warehouse

More specific to
data science

Less specific to
data science

OEBPS/cover.jpeg
Effective

Ville Tuulos

Foreword by Travis Oliphant

/'l MANNING

OEBPS/OEBPS/Images/IFC_F01_Tuulos.png
Learn the full stack of data science and machine learning infrastructure

Data scientist

How much
a data scientist
cares

Read this book if you are a

Model development
Chapter 9

Feature engineering
Chapters 7 and 9

Model operations
Chapter 8

Architecture
Chapters 3 and 5

Versioning
Chapters 3 and 6

Job scheduler
Chapters 2, 3, and 6

Compute resources
Chapters 4 and 5

Data warehouse
Chapter 7

Engineer

How much
infrastructure
is needed

OEBPS/OEBPS/Images/CH02_00_UN02_Tuulos.png

OEBPS/OEBPS/Images/CH01_F04_Tuulos.png
Model development

Feature engineering

Model operations

Architecture

Versioning

Job scheduler

Compute resources

Data warehouse

Data science
Iteration and experimentation

Software architecture
Integrations

Foundational infrastructure
Data and compute

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH01_F05_Tuulos.png
Common

Special

One Many
Basic Generalized
application infrastructure

Custom Custom
application infrastructure

Number of applications

Type of applications

OEBPS/OEBPS/Images/CH01_F01_Tuulos.png

OEBPS/OEBPS/Images/CH01_F02_Tuulos.png
How
FOCUS ON DATA SCIENTIST

PRODUCTIVITY
How MUCH
DATA
SCIENTIST 3
CARES WHAT
-
VERSIONING THE STACK
ARCHITECTURE
JoB SCHEDULER How MUCH
INFRA
P!
CompuTE S NEEDED
Wi
VOLUME VELoCITY . MLWRE PROJECTS
E » FASTER TIME To RESULTS
UDDDDDDD #MORE USE CASES
oononbhihbn 0 D + MORE RELIABLE RESULTS
pQnobRon R —y
oQoocqannn/m
VARIETY VALIDITY
[
oaroonlle Qll—\ -
‘ — v

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH02_00_UN01_Tuulos.png

OEBPS/OEBPS/Images/Tuulos_AuthorPhoto.png

OEBPS/OEBPS/Images/CH01_F06_Tuulos.png

